Full Paper View Go Back

Privacy-Preserving Outsourcing of Medical Image Data using SIFT Descriptor

Shubhangi D.C.1 , Sabahat Fatima2

1 Dept. Computer Science and Engg, VTU PG Center (VTU University), Kalaburagi, India.
2 Dept. Computer Science and Engg, VTU PG Center (VTU University), Kalaburagi, India.

Correspondence should be addressed to: shubhangidc@vtu.ac.in.


Section:Research Paper, Product Type: Journal
Vol.5 , Issue.3 , pp.141-145, Jun-2017

Online published on Jun 30, 2017


Copyright © Shubhangi D.C., Sabahat Fatima . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Shubhangi D.C., Sabahat Fatima, “Privacy-Preserving Outsourcing of Medical Image Data using SIFT Descriptor,” International Journal of Scientific Research in Network Security and Communication, Vol.5, Issue.3, pp.141-145, 2017.

MLA Style Citation: Shubhangi D.C., Sabahat Fatima "Privacy-Preserving Outsourcing of Medical Image Data using SIFT Descriptor." International Journal of Scientific Research in Network Security and Communication 5.3 (2017): 141-145.

APA Style Citation: Shubhangi D.C., Sabahat Fatima, (2017). Privacy-Preserving Outsourcing of Medical Image Data using SIFT Descriptor. International Journal of Scientific Research in Network Security and Communication, 5(3), 141-145.

BibTex Style Citation:
@article{D.C._2017,
author = {Shubhangi D.C., Sabahat Fatima},
title = {Privacy-Preserving Outsourcing of Medical Image Data using SIFT Descriptor},
journal = {International Journal of Scientific Research in Network Security and Communication},
issue_date = {6 2017},
volume = {5},
Issue = {3},
month = {6},
year = {2017},
issn = {2347-2693},
pages = {141-145},
url = {https://www.isroset.org/journal/IJSRNSC/full_paper_view.php?paper_id=287},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRNSC/full_paper_view.php?paper_id=287
TI - Privacy-Preserving Outsourcing of Medical Image Data using SIFT Descriptor
T2 - International Journal of Scientific Research in Network Security and Communication
AU - Shubhangi D.C., Sabahat Fatima
PY - 2017
DA - 2017/06/30
PB - IJCSE, Indore, INDIA
SP - 141-145
IS - 3
VL - 5
SN - 2347-2693
ER -

1312 Views    476 Downloads    359 Downloads
  
  

Abstract :
Outsourcing huge amount of personal multimedia data in these days become a challenging task for the data owners which is greatly motivated by the advances in cloud computing by using its several resources for cost saving and flexibility. despite these facts, outsourcing of multimedia data may leak the data owner’s private information, such as the personal identity, locations, or even financial profiles.in this paper, we present an effective and practical privacy-preserving computation outsourcing protocol for persuading scale-invariant feature transform (SIFT) over huge encrypted image data. We first explain the previous solutions to this problem which is either efficiency or security issues, and no one can well maintain the important functionality of the original SIFT in terms of distinctiveness and robustness. Next, we present a new scheme that achieves practicality requirements along with the maintenance of its key functionality, by first splitting the original image data and designing two novel efficient protocols for secure calculations like multiplication and comparison, then carefully distributing the feature extracted onto two independent cloud servers. Which results into practically secure solution and outperforms the state-of-the-art, with the original SIFT in terms of various characteristics, including rotation invariance, image scale invariance, robust matching across affine distortion, and an addition of noise and change in 3D viewpoint and illumination. To deal with the privacy of important medical multimedia data we took brain tumor as our case study. The Brain Tumor is affecting many people worldwide. It is not only limited to the old age people but also detected in the early age. The encrypted images are stored in the cloud. From the encrypted images we will check for brain tumor using OpenCV and preserve this information by getting revealed using our proposed method.

Key-Words / Index Term :
Image matching, scale invariant feature transform (SIFT), Difference of Gaussian (DoG).

References :
[1] Q. Wang, S. Hu, K. Ren, J. Wang, Z. Wang, and M. Du, “Catch me in the dark: Effective privacy-preserving outsourcing of feature extractions over image data,” in Proc. INFOCOM, 2016, pp. 1170–1178.
[2] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan. 2012.
[3] Z. Ren, L. Wang, Q. Wang, and M. Xu, “Dynamic proofs of retrievability for coded cloud storage systems,” IEEE Trans. Services Computing, vol. PP, no. 99, P. 1, Sep. 2015, doi: 10.1109/TSC.2015.2481880.
[4] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized search over encrypted outsourced data with efficiency improvement,” IEEE Trans. Parallel Distrib. Syst., vol. PP, no. 99, P. 1, Dec. 2015, doi: 10.1109/TPDS.2015.2506573.
[5] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multikeyword ranked search scheme over encrypted cloud data,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Feb. 2016.
[6] L. Weng, L. Amsaleg, A. Morton, and S. Marchand-Maillet, “A privacy-preserving framework for large-scale content-based information retrieval,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 1, pp. 152–167, Jan. 2015.
[7] P. Paillier and D. Pointcheval, “Efficient public-key cryptosystems provably secure against active adversaries,” in Proc. ASIACRYPT, 1999, pp. 165–179.
[8] M. Schneider and T. Schneider, “Notes on non-interactive secure comparison in ‘image feature extraction in the encrypted domain with privacy-preserving SIFT,”’ in Proc. IH&MMSec, 2014, pp. 135–140
[9] Z. Qin, J. Yan, K. Ren, C. W. Chen, and C. Wang, “Towards efficient privacy-preserving image feature extraction in cloud computing,” in Proc. ACM MM, 2014, pp. 497–506.
[10] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving symmetric encryption,” in Advances in Cryptology—EUROCRYPT. Cologne, Germany: Springer, 2009, pp. 224–241.
[11] S. Wang, M. Nassar, M. Atallah, and Q. Malluhi, “Secure and private outsourcing of shape-based feature extraction,” in Proc. ICICS, 2013, pp. 90–99
[12] Zeng, Hong, and Aiguo Song. "Optimizing Single-Trial EEG Classification by Stationary Matrix Logistic Regression in Brain-Computer Interface." (2015)
[13] S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure outsourcing of large-scale linear systems of equations,” in Proc. IEEE INFOCOM, Apr./May 2015, pp. 1035–1043.
[14] S. Hohenberger and A. Lysyanskaya, “How to securely outsource cryptographic computations,” in Theory of Cryptography. Cambridge, MA, USA: Springer, 2005, pp. 264–282
[15] S. Hohenberger and A. Lysyanskaya, “How to securely outsource cryptographic computations,” in Theory of Cryptography. Cambridge, MA, USA: Springer, 2005, pp. 264–282
[16] L. Weng, L. Amsaleg, A. Morton, and S. Marchand-Maillet, “A privacy-preserving framework for large-scale content-based information retrieval,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 1, pp. 152–167, Jan. 2015.
[17] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “SCiFI— A system for secure face identification,” in Proc. IEEE S&P, May 2010, pp. 239–254.
[18] Q. Wang, S. Hu, K. Ren, M. He, M. Du, and Z. Wang, “CloudBI: Practical privacy-preserving outsourcing of biometric identification in the cloud,” in Computer Security—ESORICS. Vienna, Austria: Springer, 2015, pp. 186–205.
[19] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-LWE and security for key dependent messages,” in Advances in Cryptology—CRYPTO. Santa Barbara, CA, USA: Springer, 2011, pp. 505–524.
[20] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” Designs, Codes Cryptogr., vol. 71, no. 1, pp. 57–81, 2014.
[21] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from somewhat homomorphic encryption,” in Advances in Cryptology—CRYPTO. Santa Barbara, CA, USA: Springer, 2012, pp. 643–662.
[22] B. Goethals, S. Laur, H. Lipmaa, and T. MielikÀinen, “On private scalar product computation for privacy-preserving data mining,” in Information Security and Cryptology—ICISC. Seoul, South Korea: Springer, 2005, pp. 104–120.
[23] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest neighbor search,” in Proc. IEEE ICDCS, Jun. 2008, pp. 311–319.
[24] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation for local image descriptors,” in Proc. IEEE CVPR, vol. 2. Jun./Jul. 2004, pp. II-506–II-513.
[25] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large vocabularies and fast spatial matching,” in Proc. IEEE CVPR, Jun. 2007, pp. 1–8.
[26] B. Goethals, S. Laur, H. Lipmaa, and T. MielikÀinen, “On private scalar product computation for privacy-preserving data mining,” in Information Security and Cryptology—ICISC. Seoul, South Korea: Springer, 2005, pp. 104–120.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at ijsrnsc@gmail.com or view contact page for more details.

Impact Factor

Journals Contents

Information

Downloads

Digital Certificate

Go to Navigation