References
[1] Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: a survey. Decision Support Systems, 74, 12-32.
[2] Ahmadian, S., Joorabloo, N., Jalili, M., Ren, Y., Meghdadi, M., & Afsharchi, M. (2020). A social recommender system based on reliable implicit relationships. Knowledge-Based Systems, 192, 105371.
[3] Rezaeipanah, A., Mojarad, M., & Fakhari, A. (2020). Providing a new approach to increase fault tolerance in cloud computing using fuzzy logic. International Journal of Computers and Applications, 1-9.
[4] Rezaeipanah, A., Ahmadi, G., & Matoori, S. S. (2020). A classification approach to link prediction in multiplex online ego-social networks. Social Network Analysis and Mining, 10(1), 1-16.
[5] Sisodia, D., Singh, L., Sisodia, S., & Saxena, K. (2012). Clustering techniques: a brief survey of different clustering algorithms. International Journal of Latest Trends in Engineering and Technology, 1(3), 82-87.
[6] Lokeshkumar, R., & Sengottuvelan, P. (2014). A Novel Approach to Improve Users Search Goal in Web Usage Mining. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 9(2), 624-628.
[7] Joshi, A., & Kaur, R. (2013). A review: Comparative study of various clustering techniques in data mining. International Journal of Advanced Research in Computer Science and Software Engineering, 3(3), 55-57.
[8] George, A. (2013). Efficient high dimension data clustering using constraint-partitioning k-means algorithm. International Arab Journal of Information Technology, 10(5), 467-476.
[9] Asghari, S., & Navimipour, N. J. (2016). Service composition mechanisms in the multi-cloud environments: a survey. International Journal of New Computer Architectures and Their Applications, 6, 40-48.
[10] Navimipour, N. J., & Milani, F. S. (2015). A comprehensive study of the resource discovery techniques in peer-to-peer networks. Peer-to-Peer Networking and Applications, 8(3), 474-492.
[11] Charband, Y., & Navimipour, N. J. (2016). Online knowledge sharing mechanisms: a systematic review of the state of the art literature and recommendations for future research. Information Systems Frontiers, 18(6), 1131-1151.
[12] Navimipour, N. J., & Asghari, S. (2017). Energy-Aware Service Composition Mechanism in Grid Computing Using an Ant Colony Optimization Algorithm, ICEIC 2017 International Conference on Electronics, Information, and Communication, 282-286.
[13] Asghari, S., & Navimipour, N. J. (2016). Review and comparison of meta-heuristic algorithms for service composition in cloud computing. Majlesi Journal of Multimedia Processing, 4(4), 28-34.
[14] Eirinaki, M., Gao, J., Varlamis, I., & Tserpes, K. (2018). Recommender Systems for Large-Scale Social Networks: A review of challenges and solutions. Future Generation Computer Systems, 78(1), 413-418.
[15] Sperli, G., Amato, F., Mercorio, F., Mezzanzanica, M., Moscato, V., & Picariello, A. (2018). A Social Media Recommender System. International Journal of Multimedia Data Engineering and Management, 9(1), 36-50.
[16] Parvazeh, F., Harounabadi, A., & Naizari, M. A. (2016). A Recommender System for Making Friendship in Social Networks Using Graph Theory and users profile. Journal of Current Research in Science, (1), 535.
[17] Mahara, T. (2016). A new similarity measure based on mean measure of divergence for collaborative filtering in sparse environment. Procedia Computer Science, 89, 450-456.
[18] Wang, B., Gao, Q., Feng, X., & Pan, F. (2017). Recommendation strategy using expanded neighbor collaborative filtering. In Control Conference (CCC), 2017 36th Chinese (pp. 1451-1455). IEEE.
[19] Panchal, P. S., & Agravat, U. D. (2013, July). Hybrid technique for user’s web page access prediction based on Markov model. In Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on (pp. 1-8). IEEE.
[20] Krishnamoorthy, P., Chaki, S., & Verma, N. (2017). Method and apparatus for determining user browsing behavior, U.S. Patent No. 9,661,088. Washington, DC: U.S. Patent and Trademark Office.
[21] No’aman, M., Gadallah, A. M., & Hefny, H. A. (2015, December). A hybrid recommendation model for web navigation. In Intelligent Computing and Information Systems (ICICIS), 2015 IEEE Seventh International Conference on (pp. 552-560). IEEE.
[22] Khalil, F., Li, J., & Wang, H. (2009). An integrated model for next page access prediction. International Journal of Knowledge and Web Intelligence, 1(1-2), 48-80.
[23] Patra, B. K., Launonen, R., Ollikainen, V., & Nandi, S. (2016). A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data. Knowledge-Based Systems, 82, 163-177.