
 © 2025, IJSRNSC All Rights Reserved 8

International Journal of Scientific Research in

Network Security and Communication
Vol.13, Issue.1, pp.08-11, February 2025

ISSN: 2321-3256 (Online)

Available online at: www.ijsrnsc.org

Research Article

Enhancing the Performance of Cryptographic Hash Function Using 2080

Bits Proposed Secure Hash Algorithm 160

Bhagvant Ram Ambedkar1

1Dept. of Computer Science and Information Technology, M. J. P. Rohilkhand University, Bareilly, Uttar Pradesh, India

*Corresponding Author: ✉

Received: 18/Dec/2024, Accepted: 20/Jan/2025, Published: 28/Feb/2025| DOI: https://doi.org/10.26438/ijsrnsc.v13i1.264

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract— an on-way hash code or message authentication code is generated using the cryptographic hash functions. It used to

be password storage, electronic data integrity, and check verification. Cryptographic hashing algorithms, which employ

beginning value and key constant to boost algorithm complexity, have been proposed by a number of academics. It is well

known that they have a very high temporal complexity due to the quantity of steps and memory space needed to store the

beginning value and key constants. Consequently, we are improving the cryptographic hash function's performance by using

2080 bits as a block of the input message and avoiding the need for the key constant. By doing this, we are generating 160-bit

fixed-length hash code, and the amount of time spent on the function proposal will be reduced in comparison to previous hash

algorithms. The outcome will be compared using the amount of time in seconds that the cryptographic hash algorithms

consumed during computation.

Keywords— Cryptography, Hash Function, Information Security, Key Constant

I. INTRODUCTION

Nowadays, there is a growing and widespread need for

electronic data communication via the Internet; everyone

wants to communicate data quickly and securely. How to

quickly and securely verify e-data during internet

communication is a major security concern since the hash

function verifies e-data sent over the internet. As a result, there

is a lot of room for study into secure hash algorithms (SHA),

and numerous academics have designed and assessed SHA's

performance. The hash code is a fixed length code of the

variable length input message, which is computed by SHA [1].

It serves as a hash code and is employed in information

authentication security [2]. For variable-length input

messages, hash functions generate fixed-size hash codes [3].

Hash algorithm applications that are efficient and low-power

have recently been created for the dynamic field [4].

Developing global enterprises employ this fundamental

cryptographic approach to confirm the confidentiality and

authenticity of web data [5]. It is extremely challenging to

create a coding theory-based electronic data verification

system that is both safe and effective [6]. The hash functions

provide the protection and privacy of electronic data [7]. One

major problem is the pervasive and growing need for social

media and safe online information transfer over public

networks [8]. Techniques for cryptographic hash functions are

employed to ensure sensitive data security and authenticity

[9]. The enhancement and implementation of the hash

algorithm for secure data communication through the web

[10]. By implementing the proposed algorithm we can provide

the authentication of message data communication through the

insecure channel [11]. The security of electronic data is based

on a secure hash algorithm [12]. Cryptographic hash functions

provide very important roles such as digital signature, message

integrity, and authentication [13]. It is very efficient in case

those devices have limited memory [14]. The basic operation

of our proposed algorithm uses bitwise logical operation [15].

Protecting smart devices is a big issue because they have

limited memory space [16]. We can encrypt the image based

on chaos and a secure hash algorithm [17]. Hashing

algorithms satisfy security requirements and prove logical and

arithmetic operations [18]. To produce a 160-bit hash code

that is independent of the starting value, this suggested

approach uses 13-step procedures in each round.

Reconstructing the original message is therefore extremely

challenging because this technique uses 2080 input blocks and

13 function processing steps per round, regardless of the

beginning value, which is disclosed to the public [2]. The main

advantage of this technique is that the starting value and key

constant are stored without the need for buffer RAM.

mailto:brambedkar@mjpru.ac.in
https://doi.org/10.26438/ijsrnsc.v13i1.264
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 Int. J. Sci. Res. in Network Security and Communication Vol.13 (1), Feb. 2025

 © 2025, IJSRNSC All Rights Reserved 9

II. ISSUED WITH CRYPTOGRAPHIC HASH

FUNCTION

A. Hah Function

Due to its inability to reconstruct the original message from

the hash code, the hash function produces a one-way hash

code. Since digital data fluctuates between 0 and 1, it is

particularly difficult to conceal and confirm the integrity of

secure digital data. These days, hash techniques are used to

secure passwords and confirm their authenticity [1]. The

property that the function's outputs are uniquely random when

applied to a large collection of inputs with padding bits is

satisfied by the perfect hashing techniques. As a cryptographic

hash function, the blameless hashing techniques are necessary

for safety applications.

B. Padding

Padding plays a crucial part in hashing algorithms by

converting variable-size input messages into fixed blocks of

messages with a fixed size. Increasing the number of padding

bits in the hash function will strengthen its security. Thus, we

are concentrating on padding the bit and applying it to the

techniques we have suggested. In hashing algorithms, padding

is crucial; the input message is secured using padding

techniques [17]. A problem with hashing algorithms is that

they add a lot of zero-bit integers and padding, followed by a

single bit [18]. For example:

Input Message = xyz

Require a total number of padding bits (P) = (1920 - 24) mod

2080 = 1896 bits

1000

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

Length of Padding bit = 1896

III. PROPOSED ALGORITHM

The hash function's starting value (H0) is the main subject of

this study. Numerous academics have suggested an existing

approach that uses a hash function (Hn) or message digest with

a specified, identical beginning value. When multiple input

messages are identical, it becomes extremely challenging for

us to distinguish between them. Since we obtain the same hash

function (Hn) in this instance [1]. For this reason, we are

suggesting a PSHA160 to produce a 160-bit secure hash

function. The suggested algorithm's secure hash function will

be unaffected by the additive constant Kt and the beginning

value (IV or H0). The basic architecture of PSHA 160 is

shown in Fig. 1

Figure 1. The basic hashing function of PSHA 160

It is particularly helpful for electronic data verification.

PSHA160 performs the subsequent actions:

1. Choose any input message (M) of variable length

2. Input messages are separated into blocks

3. Compute the length of padding bits

4. Length of block with padding bit (E)= 2080 bits

5. E = M + P + L = 2080 bits

6. E is separated into thirty-two sub-blocks (E0, E1,

………. E12), and each block size will be 160 bits.

7. Utilizing logical NOR functions (F) in 12 steps and logical

Ex-OR functions (F) in 11 steps, create the hash function as

illustrated in Fig. 2.

 Int. J. Sci. Res. in Network Security and Communication Vol.13 (1), Feb. 2025

 © 2025, IJSRNSC All Rights Reserved 10

Figure 2. Single-round hash function processing of PSHA-160

IV. EXPERIMENTAL RESULTS

Experimental results of PSHA 160 and hashing algorithms

are executed by python-3.9.0 on Windows 10, 64-bit

Operating system, 4GB RAM platform, and Intel(R)

processor shown in Table 1.
Table 1. Experimental Executed Results of Hashing Algorithms with

Variable Length Input Message

Hash

Algorithms

Input Message

Length in Bits

Elapsed time in the Second

PSHA-160 112 0.00011179999955857056

152 0.00010250000013911631

88 0.00015970000004017493

SHA256 112 0.0004322000000058779

152 0.0003767000000607368

88 0.0002563000000463944

SHA384 112 0.00033790000003364185

152 0.00020289999997658015

88 0.0003958999998303625

SHA224 112 0.00043310000000928994

152 0.0002565000000913642

88 0.0003089999997882842

SHA512 112 0.00027039999991984587

152 0.00010189999989052012

88 0.00015729999995528487

SHA1 112 0.0003123999999843363

152 0.0006099000000858723

88 0.00038560000029974617

V. ANALYSIS OF RESULTS

To avoid the preimage and second preimage attacks, the input

message length for a map with an n-bit hash code size will be

less than 2n. Selecting values of x at random and trying each

one until a collision happens is known as a brute-force attack.

The amount of work required for an n-bit hash value is

proportional to 2n, and it attempts, on average, 2n-1 values of x

to identify one that produces a certain hash value h. [2, 19].

The above security requirements satisfy our proposed

algorithm so our proposed algorithm is secure and time

efficient because it takes to order one complexity O(1) during

all phases of function processing.

Our proposed algorithm satisfies all security requirements:

Preimage Resistance:

M = wxyz

M in bits = 32

PSHA-160 hash code=

d60d69d90c143d60d69d90c143d60d1ea14d6943

The input message is the preimage of the hash code.

Collision Resistance:

M = zyxw

M in bits = 32

PSHA-160 hash code =

dd25f98a5a44bdd25f98a5a44bdd2583f31cdc4b

As shown in the above-executed example H(wxyz) ≠

H(zyxw), it is collision-resistant.

Second Preimage:

It is quite challenging to locate any two input messages (x,

y) that have the hash code H(x) = H(y).

Twelve logical NOR operations used in this study swap

maximum zeroes for one and vice versa. Nineteen Exclusive-

OR logical operations, twelve round steps, and an 11-bit

circular left shift (CLS) four-step operation with bitwise

logical NOR and a 21-bit CLS with bitwise logical Exclusive-

OR ten-step operation are used for function operations. PSHA-

160's executed results with existing hashing algorithms are

executed using the built-in Python tools of import hashlib, as

indicated in Table 1. The comparative executed results of

elapsed time in seconds with variable size input message

length are shown in Fig. 4, and the basic parameter

comparative analysis of hashing algorithms with PSHA-160 is

shown in Fig. 3.

Figure 3. Comparative analysis of Hashing Algorithm with PSHA 160

The elapsed time in seconds consumed by hashing algorithms

during computation is shown in Fig. 4. It may varied with

computing devices will changed.

Figure 4. Comparative Expperimental Results of Hashing Algorithms with

Elapsed Time in Second

 Int. J. Sci. Res. in Network Security and Communication Vol.13 (1), Feb. 2025

 © 2025, IJSRNSC All Rights Reserved 11

VI. CONCLUSION

A secure hash technique that is independent of key constants

employed by cryptographic hash methods was proposed in this

study. It is using 2080 bits as the input message to generate a

160-bit secure hash algorithm. Because it uses less elapsed

time than other hash algorithms, it improves the cryptographic

hash function's performance. Since there is no specified

keyword needed and the input block size for function

processing is 2080 bits, we can assert that this hash technique

is secure. This algorithm's primary drawback is its weak

security when input messages contain fewer than three

characters. Future research can address this issue, and this

algorithm's benefit is that it is extremely challenging to

reconstruct the original message from the hash code because

there isn't an input variable that is publicly known.

CONFLICT OF INTEREST

Author has no conflict interest and no has any Funding source.

ACKNOWLEDGMENT

I would like to sincerely thank and be obliged to Professor P.

K. Bharti and Dr. Akhtar Husain for their unwavering support,

capable direction, and insightful recommendations in writing

this paper.
.

REFERENCES

[1] B. R. Ambedkar, P. K. Bharti, Akhtar Husain."Enhancing the

Performance of HashFunction Using Autonomous Initial

ValueProposed Secure Hash Algorithm 256", 2022IEEE 11th

International Conference onCommunication Systems and

NetworkTechnologies (CSNT), 2022.

[2] B. R. Ambedkar, P. K. Bharti, Akhtar Husain."Design and Analysis

of Hash Algorithm UsingAutonomous Initial Value Proposed

SecureHash Algorithm64", 2021 IEEE 18th IndiaCouncil

International Conference (INDICON),2021

[3] S. Mathew and K. P. Jacob, “Performance Evaluation of Popular

Hash Functions,” World Academy of Science, Engineering and

Technology, pp.449–452, 2010.

[4] X. Zheng, X. Hu, J. Zhang, J. Yang, S. Cai, and X. Xiong, “An

Efficient and Low-Power Design of the SM3 Hash Algorithm for

IoT,” Electronics, vol. 8, no. 9, Art. no. 9, Sep. 2019, doi:

10.3390/electronics8091033.

[5] A. A. Yavuz and M. O. Ozmen, “Ultra Lightweight Multiple-time

Digital Signature for the Internet of Things Devices,” IEEE

Transactions on Services Computing, pp.1–1, 2019, doi:

10.1109/TSC.2019.2928303.

[6] P. Santini, M. Baldi, and F. Chiaraluce, “Cryptanalysis of a One-

Time Code-Based Digital Signature Scheme,” in 2019 IEEE

International Symposium on Information Theory (ISIT), Jul.,

pp.2594–2598, 2019. doi: 10.1109/ISIT.2019.8849244.

[7] A. Mohammed Ali and A. Kadhim Farhan, “A Novel Improvement

With an Effective Expansion to Enhance the MD5 Hash Function

for Verification of a Secure E-Document,” IEEE Access, vol.8,

pp.80290–80304, 2020, doi: 10.1109/ACCESS.2020.2989050.

[8] M. Samiullah et al., “An Image Encryption Scheme Based on DNA

Computing and Multiple Chaotic Systems,” IEEE Access, vol. 8,

pp. 25650–25663, 2020, doi: 10.1109/ACCESS.2020.2970981.

[9] L. Singh, A. K. Singh, and P. K. Singh, “Secure data hiding

techniques: a survey,” Multimed Tools Appl, vol. 79, no. 23, pp.

15901–15921, Jun. 2020, doi: 10.1007/s11042-018-6407-5.

[10] F. E. De Guzman, B. D. Gerardo, and R. P. Medina,

“Implementation of Enhanced Secure Hash Algorithm Towards a

Secured Web Portal,” in 2019 IEEE 4th International Conference

on Computer and Communication Systems (ICCCS), Feb., pp.189–

192, 2019. doi: 10.1109/CCOMS.2019.8821763.

[11] A. Faz Hernández, H. Fujii, D. Aranha, and J. López, “A Secure

and Efficient Implementation of the Quotient Digital Signature

Algorithm (qDSA)”, pp.189, 2017. doi: 10.1007/978-3-319-71501-

8_10.

[12] X. Fei, K. Li, W. Yang, and K. Li, “A secure and efficient file

protecting system based on SHA3 and parallel AES,” Parallel

Computing, Vol.52, pp.106–132, 2016, doi:

10.1016/j.parco.2016.01.001.

[13] B. Madhuravani and D. S. R. Murthy, “Cryptographic hash

functions: SHA family,” International Journal of Innovative

Technology and Exploring Engineering (IJITEE), Vol.2, No.4,

pp.326–329, 2013.

[14] K. Ideguchi, T. Owada, and H. Yoshida, “A Study on RAM

Requirements of Various SHA-3 Candidates on Low-cost 8-bit

CPUs,” 260, 2009. Accessed: Nov. 23, 2021.

[15] V. A. Melnyk and A. Y. Kit, “Basic Operations of Modern Hashing

Algorithms,” COMPUTER SCIENCE, p. 4, 2013.

[16] W. Liang, S. Xie, J. Long, K.-C. Li, D. Zhang, and K. Li, “A

double PUF-based RFID identity authentication protocol in

service-centric internet of things environments,” Information

Sciences, Vol.503, pp.129–147, Nov. 2019, doi:

10.1016/j.ins.2019.06.047.

[17] S. Zhu, C. Zhu, and W. Wang, “A new image encryption algorithm

based on chaos and secure hash SHA-256,” Entropy, Vol.20, No.9,

p.716, 2018.

[18] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M.

Schofnegger, “Poseidon: A New Hash Function for Zero-

Knowledge Proof Systems,” presented at the 30th {USENIX}

Security Symposium ({USENIX} Security 21), 2021, pp. 519–535.

Accessed: Nov. 23, 2021.

[19] A. Kuznetsov, M. Lutsenko, K. Kuznetsova, O. Martyniuk, V.

Babenko, and I. Perevozova, “Statistical Testing of Blockchain

Hash Algorithms,” p. 13, 2020.

AUTHORS PROFILE

Dr. Bhagwant Ram Ambedkar

received the B. Tech. Degree in

Electronics Engineering from the

Institute of Engineering and Technology

Lucknow, India in 2001, M. Tech. with

specialization in Wireless

Communication and Computing from

Indian Institute of Information

Technology, Allahabad, India in 2004 and Ph. D. in

Computer Science and Engineering from Shri Venkateshwara

University, Amroha Uttar Pradesh, India in 2024. He has 16

years of teaching experience in Engineering Colleges and

Universities. His research interests are Cryptography and

Network Security, Advanced Computer networks, and

Wireless Communication and Computing. Presently he is

working as an Assistant Professor in the Department of

Computer Science and Information Technology, MJP

Rohilkhand University Bareilly.

