
 
www.ijsrnsc.org 

Available online at www.ijsrnsc.org 
 

IJSRNSC 
 

Volume-11, Issue-6, December 2023      
Review Paper 

Int. J. Sc. Res. in 

Network Security 

and Communication 
 

E-ISSN:2321-3256 
  

   

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             1 

                 

A Review on New Multilevel Scheduling Algorithm and SJF and 

Priority Scheduling Algorithms 

 
Irshad Khan

1*
, Mohd Owais

2
, Saima Aleem

3
, Tasleem Jamal

4 

 
1,2,3,4

Dept. of CSE Khwaja Moinuddin Chishti Language University, Lucknow, UP, India 

 
*Corresponding Author: irshadkhan05.234@gmail.com, 6306655471 

 
Received: 22/Sept/2023, Accepted: 09/Nov/2023, Published: 31/Dec/2023 

Abstract— The two CPU scheduling algorithms that received the majority of our attention in this paper after reviewing a 

variety of CPU scheduling algorithms were the shortest job first and priority scheduling algorithms, as well as an improved 

priority scheduling algorithm that performs better than current scheduling algorithms. Scheduling is the process of 

assigning tasks to the CPU to optimize use. Because the CPU is the most important resource in a computer system, 

numerous scheduling approaches aim to maximize its use. The purpose of this study is to explore the CPU scheduler's 

construction of high-quality scheduling algorithms that meet the scheduling objectives and to study the performance of a 

multilevel scheduling algorithm that combines two scheduling algorithms. 
 

Keywords — CPU scheduling, Scheduler, Exponential Averaging, burst time, waiting time, turnaround time 

 

I. INTRODUCTION 

 

An essential part of an operating system is scheduling. 

Scheduling means assigning certain processes, and CPU 

time so that they get executed. Only one process out of 

numerous processes may be active at once in a single-

processor system, all other processes must wait until the 

CPU is free and can be rescheduled. To optimize CPU use, 

multiprogramming aims to keep some processes active at 

all times.  Most computer resources are planned out before 

usage. Of course, one of the most important computer 

resources is the CPU. Because of this, operating-system 

architecture revolves around its scheduling. CPU 

scheduling decides which run-able processes are executed 

from numerous run-able processes. CPU scheduling is 

crucial because it has a significant impact on the 

consumption of resources and the performance of the 

overall system. The development and evaluation of CPU 

scheduling methods, involving the modification and testing 

of operating system kernel code and assessing performance 

with real applications under a consistent workload, can be a 

complex and time-intensive task. Given that the processor 

is a pivotal resource, effective CPU scheduling is essential 

for realizing the design objectives of an operating system. 

The goal is to optimize CPU utilization by accommodating 

as many operating processes as possible simultaneously. 

Scheduling is required to ensure maximum CPU utilization. 

Almost every computer resource is scheduled before use. 

The main task of a scheduler is to choose which tasks to 

execute as there can be a number of tasks ready to be 

executed. Successful CPU scheduling depends on process 

execution and I/O wait.  Process execution starts with a 

CPU burst followed by an I/O burst and this thing happens 

rapidly. The last CPU burst ends with a system request to 

expire execution. An SJF algorithm allocates CPU to the 

task with the smallest possible burst time. A priority 

scheduling algorithm assigns certain priority to processes 

and executes the process with the highest priority. But 

contemporary algorithms can be improved as we will see in 

this review. 

 

II. CPU SCHEDULING 

 

A. Scheduling goals 

1) Accountability: When creating a task scheduling, a 

system developer must take into account a number of 

variables, including the type of systems being utilized 

and user requirements. 

2) Increase throughput: A scheduler's throughput is 

increased by serving the most processes possible in a 

given amount of time. 

3) Prevent an endless blocking phase or starvation: 

Preventing a process from being trapped in a waiting 

state for an indefinite amount of time before or during 

process servicing. 

4) Reduce overhead: By effectively using system 

resources, system overhead may be minimized (system 

overhead reflects resource wastage). Thus, total 

system performance significantly increases. 

5) Priorities must be enforced: In a system based on 

process priorities, the scheduler must give higher 

priority processes preference. 

6) Achieve a balance between responsiveness and 

utilization: The scheduler must keep the system 

resources occupied. By prioritizing activities that have 

a short burst period and can be fulfilled quickly, the 

scheduler may boost throughput while preventing 

famine by using the idea of aging. The scheduler will 

also give preference to processes whose completion 

causes other processes to execute to achieve objectives. 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             2 

B.  Scheduling parameters 

CPU scheduling algorithms rely on below mentioned 

criteria: 

1) Processor Utilization: The ratio of the processor's busy 

time to the overall amount of time needed for a process 

to be completed. The goal is to maintain the processor's 

maximum amount of activity. 

Processor Utilization = (Processor buy time) / 

(Processor busy time + Processor idle time)  

2) Throughput: The number of tasks accomplished within 

a specified time frame,  

Throughput = (Number of completed processes) / 

(Time Unit)  

3) Turnaround Time (tat): Total time spent by processes 

waiting to get into the ready queue, time for execution, 

and time spent on input/output operations 

tat = t (process completed) – t (process submitted) 

4) Waiting Time (wt): Time spent by a process in the 

ready queue The duration occupied in the ready queue 

is influenced solely by processor scheduling 

algorithms, as they impact the waiting time 

specifically. Therefore, focusing on waiting time, 

rather than turnaround time, is usually adequate. 

5) Response Time (rt): The time required to initiate a 

response to a request.  

 rt = t (first response) – t (submission of request)  

 

In interactive systems, this criterion holds significance. 

Typically, the goal is to optimize processor utilization and 

throughput while minimizing turnaround time (tat), waiting 

time (wt), and response time (rt). However, in certain 

situations, alternative combinations may be necessary based 

on specific process requirements. 

 

C.  Scheduling strategies 

There are two different kinds of scheduling. 

1) Non-preemptive: A non-preemptive scheduling 

algorithm selects a process to execute and allows it to 

continue running until it either becomes blocked or 

voluntarily releases the CPU. In other words, it lets the 

chosen task or job complete its execution without 

interruption. Examples of non-preemptive scheduling 

algorithms include First-Come-First Serve (FCFS) and 

Shortest Job Next (SJF). 

2) Preemptive: Within that type of scheduling, a process's 

execution may be interrupted before the end of its burst 

time and may be replaced by another process to whom 

the priority is greater than the first process to arrive in 

the CPU. Examples of this kind of scheduling include 

Round Robin and Priority Driven. 

 

D.  First come first serve (FCFS) 

FCFS is not pre-emptive. It employs the First in-First Out 

(FIFO) approach to give processes attention in the order for 

which they submit requests to the CPU. The process or job 

that wants the CPU first gets it, and any other processes or 

jobs in the queue must wait for the CPU to be available. 

FCFS, also known as First-In-First-Out (FIFO), is the most 

basic scheduling method [1]. Its first-in, first-out 

implementation is straightforward to understand and put 

into practice, but because the average wait time is so long, it 

performs poorly [3]. 

 

E. Shortest job first (SJF) scheduling 

The criterion of the Shortest Job Next (SJF) algorithm is to 

allocate the CPU to the process with the smallest CPU 

burst. In cases where two processes share the same CPU 

burst time, First-Come-First-Serve (FCFS) is employed to 

resolve the tie. SJF can operate in either pre-emptive or 

non-preemptive mode, depending on the arrival and burst 

times of the processes. When compared to FCFS, SJF 

typically reduces the average waiting time for processes. 

 

In contrast to FCFS, SJF prioritizes shorter processes over 

longer ones, which can be seen as an overhead. It selects the 

task with the shortest burst time, freeing up the CPU for 

subsequent processes immediately after the current process 

is completed. This prevents smaller processes from getting 

delayed in the ready queue for an extended duration behind 

larger processes. The objective is to enhance overall 

efficiency by swiftly accommodating shorter processes. It’s 

straightforward to implement in Batch systems, because the  

amount of CPU time needed is foreseen in advance, and it's 

the best method for reducing wait times. However, because 

the amount of CPU time needed is unknown in interactive 

systems, its implementation is impractical. In this case, the 

processor should be aware of the expected processing 

time.[3]. 

 

F. SJF algorithm 

1) Sort all the processes according to their arrival time. 

2) Select the process with a minimum arrival time as 

well as minimum burst time. 

3) After completion of the process, select from the 

ready queue the process that has the minimum burst 

time. 

4) Repeat the above processes until all processes are 

terminated. 

 

G. Prediction of SJF burst time 

SJF burst time prediction is a critical aspect of CPU 

scheduling algorithms, involving the anticipation of a 

process's next CPU burst duration. Utilizing historical data, 

statistical methods, and adaptive models contributes to 

refining these predictions, and addressing the challenges 

posed by the dynamic and unpredictable nature of computer 

systems. 

 

The concept of predicting burst times in Shortest Job First 

(SJF) is an integral part of CPU scheduling algorithms, 

aiming to anticipate the duration of a process's upcoming 

CPU burst. The accuracy of burst time predictions holds 

significant importance in optimizing the operating system's 

scheduling decisions, allowing for more informed 

selections of processes for execution. 

 

A prevalent approach to SJF burst time prediction involves 

utilizing historical data. The system observes the past CPU 

burst times of a specific process and leverages this 

information to estimate its future behaviour. This method 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             3 

operates on the assumption that a process's future 

performance aligns with its historical patterns, providing 

the basis for predictions. 

 

However, accurately predicting burst times faces challenges 

due to the dynamic nature of computer systems. Factors 

such as changes in input data, fluctuations in system load, 

and the unpredictable nature of certain applications can 

impact a process's behaviour. Consequently, SJF burst time 

prediction methods typically incorporate a level of 

uncertainty. 

 

Diverse algorithms and techniques are applied to SJF burst 

time prediction, encompassing statistical methods, 

exponential averaging, and adaptive models. Statistical 

methods may entail computing the mean or weighted 

average of past burst times. Exponential averaging gives 

more weight to recent burst times, assuming that recent 

behaviour holds greater relevance for predicting future 

behaviour. 

 

We can classify these algorithm as: 

1) Static techniques 

a) Process size: This categorization pertains to static 

techniques reliant on process size. In the context of 

CPU scheduling algorithms, process size denotes the 

quantity of CPU time or resources required for a 

specific process to finalize its execution. Algorithms 

falling under the umbrella of process size static 

techniques make scheduling decisions by taking into 

account the predetermined or known size of 

processes.  

b) Process type: Within the realm of static techniques, 

the process type classification encompasses 

algorithms that base scheduling decisions on the 

specific type or category of processes. Distinct 

processes may possess unique characteristics or 

priorities, and this categorization integrates these 

attributes into the scheduling process.  

2) Dynamic techniques 

a) Simple Averaging 

Simple Averaging is a basic statistical technique employed 

in different domains, including its application in predicting 

Shortest Job First (SJF) burst times within CPU scheduling 

algorithms. In this particular scenario, simple averaging 

entails the computation of the mean or average based on the 

past CPU burst times of a specific process, serving as an 

estimation for its future behavior. 

 

The procedure is straightforward: the system observes the 

historical CPU burst times of a designated process, 

aggregates them, and subsequently divides the sum by the 

total number of observations. This calculation results in the 

average burst time, which is then regarded as a forecast for 

the forthcoming CPU burst duration of the process. 

 

b) Exponential Averaging or Aging 

The Shortest Job First (SJF) algorithm, being optimal, 

proves challenging for implementation in CPU scheduling 

due to the inherent uncertainty in predicting the length of 

the next CPU burst. Typically, the next CPU burst is 

estimated using an exponential average derived from the 

measured lengths of prior CPU bursts, and the formula for 

this exponential average is as follows. Let tn be the length 

of the nth CPU burst and let τn+1 be the predicted value of 

the next CPU burst. Then, for α, 0 ≤ α ≤ 1, define. 

 

τn+1=αtn+(1−α) τn                     (1) 

τn+1=expected time for n+1 

tn=actual burst time of the process 

Let’s expand the formula (1) to understand the 

behavior of the exponential average:     

τn+1=αtn(1-α)stn-1+…(1-α)
j
tn-j+…(1-α)

n+1
τ0 (2) 

 

Let’s say we have 4 processes with known burst times as 

mentioned in “Table I”, and we must calculate the burst 

time for the fifth process: -  

 

Table 1. Process and their burst time 

 

α = 0.2, τ1 = 3, τ5 =? 

Using formula (1): 

τn+1=αtn+(1−α) τn 
τ1 = 3 
τ2 = 0.2 x 3 + 0.8 x τ1 

= 0.2 x 3 + 0.8 x 3 

τ2 = 3 
τ3 = 0.2 x 4 + 0.8 x τ2 

= 0.2 x 4 + 0.8 x 3 

τ3 = 3.2 
τ 4 = 0.2 x 2 + 0.8 x τ3 

= 0.2 x 2 + 0.8 x 3.2 

τ 4 = 2.96 
τ 5 = 0.2 x 1 + 0.8 x τ4 

= 0.2 x 1 + 0.8 x 2.96 

τ 5 = 2.568 
Hence the expected Burst Time for the fifth process 

is 2.568 milliseconds. 

 

H. Round robin (RR): 

Round Robin (RR) Algorithm has been one of the earliest, 

simplest, fairest, and most ubiquitously used scheduling 

algorithms. It was made for time-sharing processes [4] In 

this algorithm, each process gets a piece of time called 

"quantum time" to use while the CPU is running. Every 

process has the same priority here, and each is assigned a 

time limit after which it is preempted. Usually, it lasts 

between 10 and 100 milliseconds [5]. If the current 

process's limit has been reached, it will temporarily stop 

Process Id Time (ms) 

CPU burst duration  

P1 3 

P2 4 

P3 2 

P4 1 

P5 ? 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             4 

running and go to the finish of the ready queue.  When 

employing RRS, the operating system selects the first task 

from the ready list, sets a timer to stop after a one-time 

quantum, and then assigns the CPU to that process. The 

process releases the processor freely, either by quitting or 

by sending an I/O request, if its processor burst time is less 

than the time quantum. The OS will then carry out the 

following procedure in the ready list. The timer will 

activate when a one-time quantum has passed if the process, 

on the other hand, has a processor burst time longer than the 

time quantum. This interrupts (preempts) the running 

process and moves its Program Control Block towards the 

end of the ready list. [4][2] 

 

I. Priority scheduling 

One of the most popular scheduling methods in batch 

systems is priority scheduling, a non-preemptive technique. 

Priority is given to each procedure. The highest priority 

process must be carried out first and as quickly as possible. 

Processes of the same priority are carried out in the order in 

which they are received. Based on memory needs, time 

needs, or any additional resource needs, priority may be 

determined. Priority is generally stated using a fixed range 

of numbers like 0 to 7 or 0 to 4,095 etc. Generally, 0 is 

considered the highest priority but there is no fixed rule. 

The Operating System assigns a fixed priority rank to each 

process. Processes with Lower priority get interrupted by 

incoming higher-priority processes.  

 

III.   LITERATURE SURVEY 

 

This section includes a quick assessment of some of the 

most important studies conducted to improve the efficiency 

of task scheduling in operating system environments. The 

author presented a novel method to enhance the RR 

algorithm's time quantum computation by taking the 

processes' arrival times into account  [6]. The following 

algorithms were outperformed by this new strategy. 

Lowering the average WT, average TAT, and quantity of 

context switch CS, DABRR, S.R.R, DQRRR, and SARR 

may be achieved. 

 

The author introduced a novel method in [7] that combines 

the SJF algorithm with the RR algorithm to reduce the 

waiting time for activities. The core concept of the novel 

approach involves dynamically calculating the time 

quantum for every job in each round. Moreover, the task-

ready queue has been categorized into short and long jobs, 

utilizing the median as the determining factor. The results 

of the experiment using Cloud Sim demonstrate that the 

unique approach successfully addressed the issue of famine 

in lengthy jobs. Additionally, compared to SJF, RR, and 

Second Interval Priority Based RR [2], it has shown 

excellent performance in lowering waiting time and 

reaction time (TSPBRR). 

 

The Author [8] introduced the PIMRR method in [14]. 

Each process’s priority is first determined via a modulo 

operation. The procedures are then organized in the ready 

state based on their priority. The quantum time, which 

varied dynamically between each round, is then set as the 

average of their individual burst times. The findings show 

excellent progress in lowering waiting times, turnaround 

times, and the frequency of context switches. 

 

[11]   Jinkyu Lee and colleagues introduced control pre-

emption (CP-EDF) in their work [44]. This method 

manages instances of pre-empting processes, contrasting 

with existing approaches that organize pre-empted 

processes. The technique is specifically designed for a 

single-processor platform, enabling the execution of at most 

one process at a time. 

 

In their work [12], O. Hani and M. Dorgham introduced an 

innovative approach to enhance the round-robin (RR) 

algorithm. Their method involves utilizing the geometric 

median to determine the time quantum. The application of 

this method extends to two distinct scenarios. In the first 

case, when the arrival times of processes are known, they 

are allocated to the CPU in a First-Come-First-Serve 

(FCFS) manner.  

 

If the initial process requires more than one quantum, a 

comparison with other processes in the ready queue is 

made, and the Shortest Job First (SJF) algorithm is 

employed to select the subsequent process. In the second 

case, where the arrival times are unknown, the proposed 

method exclusively utilizes the SJF algorithm for process 

selection. The outcomes of this approach demonstrate a 

notable enhancement in terms of average waiting time 

(WT) and average turnaround time (TAT). 

 

In [13], S. Saeidi proposed a novel mathematical model 

designed for computing the optimal quantum of the round-

robin (RR) algorithm. The aim is to minimize the average 

waiting time of processes. The experimental results, 

conducted using Lingo 8.0 software, demonstrated superior 

performance compared to alternative approaches. 

 

The authors presented an effective scheduling approach in 

their paper [14], aimed at improving the performance of 

both the Round Robin (RR) algorithm and the Robin 

Cloudlet Scheduling Algorithm (IRRCSA). In this strategy, 

tasks are allocated to suitable Virtual Machines (VMs), 

each equipped with its own local queue (LQ).  

 

The scheduling of tasks in these LQs is accomplished using 

the Round Robin (RR) algorithm with an optimal quantum, 

determined based on the median value of the average 

execution time of tasks and the highest execution time 

among them. The evaluation results demonstrate notable 

enhancements in resource utilization, average waiting time, 

and average turnaround time. 

 

The studies highlight diverse innovations in task 

scheduling, including optimizing the RR algorithm with 

arrival times, combining SJF with RR, and introducing 

PIMRR and CP-EDF methods. These approaches 

consistently reduce waiting times, and context switches, 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             5 

and enhance prioritization, leading to notable improvements 

in system efficiency.  

 

IV. PRIORITY SCHEDULING 

ALGORITHM BASED ON EXISTING FCFS 
 

The present algorithm follows a prioritized execution 

sequence, giving precedence to the process with the highest 

priority. Waiting time and turnaround time are calculated 

after the execution of each task. However, in situations 

where priorities are equal, the algorithm resorts to First-

Come, First-Served (FCFS) ordering. The method for 

priority Scheduling, in which, if two or more processes 

have the same priority, the process that comes first is run 

first. 

 

J. Problem statement 

As comparable priority tasks occur, the priority scheduling 

algorithm uses FCFS, this results in an increase in average 

wait and turnaround times. Regardless of how long it takes 

the CPU, the process that reaches first gets performed first. 

Therefore, under this scenario, if large burst period 

processes are executed early, other processes will spend a 

lot of time in the waiting queue. The average waiting time 

and turnaround time are increased as a consequence of the 

way the procedures are organized in the ready queue. 

Objective: The purpose of this study is to: 

a) To analyze the SJF priority-based and FCFS priority-

based scheduling algorithms. 

b) To lower the average CPU waiting and turnaround 

time. 

 

K. Analysis and Experimental Results 

One of the primary responsibilities of the process manager 

is scheduling, which entails determining the allocation of 

the CPU to processes in the ready queue. Different 

scheduling algorithms are available for decision-making. 

Priority Scheduling Algorithm is one of them; it is based 

on the priority given to each process. Priority scheduling 

prioritizes the execution of each process, starting with the 

one with the greatest priority [9]. When multiple processes 

share the same priority, allocate the CPU to the process 

with the briefest task duration (lowest burst time). In cases 

where processes have equal priority and burst time, 

prioritize them based on the First Come First Serve (FCFS) 

principle. 

Consider the set of 5 processes whose arrival time and 

burst time are given below in table - 

 
Table 2. Arrival Time and Burst Time 

 

If the CPU scheduling policy is SJF non-preemptive, 

calculate the average waiting time and average turnaround 

time (In this process, when one process is completed, only 

then does the other start, and no one can interrupt). 

 

Gantt Chart- 

P4 P1 P3 P5 P2 

0             6              10               13                14            16 

Now, we know that: - 

• Turn Around time = Exit time – Arrival time 

• Waiting time = Turn Around time – Burst time 

We have calculated turn around time and waiting time for 

processes P1-P5 in “Table II.” 

 
Table 3. Turn Around Time and Waiting Time of processes in 

Table 2 

 

Now, 

• Average Turn Around time = (6 + 10 + 13 + 14 + 16) / 5 

= 40 / 5 = 11.8 unit 

• Average waiting time = (0 + 6 + 10 + 13 + 14) / 5 = 24 / 

5 = 8.6 unit 

For Pre-emptive: - 

Consider the set of 5 processes whose arrival time and 

burst time are given in “Table 2.”.  

  

Considering that the CPU scheduling policy is SJF 

preemptive, we will calculate the average waiting time and 

average turnaround time. 

Gantt chart 

P4 P2 P1 P2 P3 P5 P4 

0        1            3             4         6             8          11        16 

 

In this process, one or more processes can interrupt each 

other. The calculated Exit time, Turn Time, and Waiting 

Time are mentioned in “table 4.” 

 
Table 4. Exit time, Turn Around Time, and Waiting Time of the 

process are mentioned in Table 2. 

 

 Average Turn Around time = (1 + 5 + 4 + 16 + 9) / 5 = 35 

/ 5 = 7 unit 

Process Id Time 

Arrival Time Burst time 

P1 3 1 

P2 1 4 

P3 4 2 

P4 0 6 

P5 2 3 

Process Id Time 

Turn Around Time Waiting time 

P1 6 0 

P2 10 6 

P3 13 10 

P4 14 13 

P5 16 14 

Process 

Id 

Time 

Exit Time Turn Around 

Time 

Waiting 

Time 

P1 4 1 0 

P2 6 5 1 

P3 8 4 2 

P4 16 16 10 

P5 11 9 6 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             6 

Average waiting time = (0 + 1 + 2 + 10 + 6) / 5 = 19 / 5 = 

3.8 units. 
 

Now that we are aware of how to plan tasks using SJF 

while taking into account their burst duration. However, 

the issue of how to forecast the amount of burst time 

needed for a certain operation emerges. since we are 

unable to predict precisely how long a work will take. So, 

the following are various burst time determination methods 

employed in contemporary operating systems. 

 

For example, let P0, P1, P2, P3, and P4 Priority be 

assigned for each process as mentioned in “table 5”. 

 
Table 5. Burst time and Priority. 

 

Gantt Chart: 

 

The described algorithm represents a modern priority 

scheduling approach but comes with certain drawbacks: 

 There's a potential for indefinite blocking or 

starvation in low-priority processes. 

 In cases where two processes share the same 

priority, the tie is resolved on a First Come First 

Serve (FCFS) basis, leading to a gradual increase 

in waiting time for processes with equivalent 

priorities. 

Consider the following processes with equal priority:  

 
Table 6. Burst Time and Priority of Processes 

 

Gantt Chart Using Normal Algorithm: 

0  12      20          23            26                  29 

 

The waiting time and the average waiting time is 

(0+12+20+23+26)/5 = 16.2ms.  

Table 7. Waiting Time of processes in Table 6 Using a normal algorithm 

 
Table 8. Turnaround Time of processes in Table 6 Using a 

normal algorithm 

 

The average turnaround time is (12+20+23+26+29)/5 = 

29ms 

We can improve these results by slightly changing the 

algorithm. Using the algorithm mentioned in the paper 

[10]. 

V.  PROPOSED PRIORITY SCHEDULING 

ALGORITHM [10] 

The algorithm [10] integrates the operational principles of 

both Shortest Job First (SJF) and the standard priority 

scheduling algorithm. The procedure is outlined as 

follows: 

1. Assign priorities to processes in the ready queue. 

2. Allocate the CPU to the process with the highest 

priority. 

If two or more processes have the same priority, then: 

{ 

Assign the CPU to the process with the shortest 

job, characterized by the minimum burst time. 

} 

If two or more processes have the same priority and equal 

burst time, then: 

{ 

Assign the CPU to the processes following a First 

Come First Serve (FCFS) basis. 

} 

 

Applying comparison and implementation methods used in 

“A New Multilevel CPU Scheduling Algorithm” on the 

processes taken above: 

 

The Gantt Chart for the Processes mentioned in “Table 6.”: 

P3 P4 P5 P2 P1 

0            3           6             9              17               29 

The average waiting time is (17+9+0+3+6)/5= 7ms  

 

 

Process Id Time(ms) and Priority 

Burst Time Priority 

P0 12 3 

P1 2 1 

P2 3 3 

P3 2 4 

P4 6 2 

P1 P4 P0 P2 P3 

0            2                  8              20             23                25 

Process Id Time 

Burst time  Priority 

P1 12 3 

P2 8 3 

P3 3 3 

P4 3 3 

P5 3 3 

    P1    P2   P3   P4      P5 

Process Id Time (ms) 

Waiting time 

P1 0 

P2 12 

P3 20 

P4 23 

P5 26 

Process Id Time 

Turnaround time (ms) 

P1 12 

P2 20 

P3 23 

P4 26 

P5 29 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             7 

Table 9. The waiting time of processes in Table 6 using the proposed 

algorithm [10] 

 

Comparison Of Scheduling Policies(Proposed and 

Existing) 

 

 
Figure 1. Waiting Time Comparison of existing algorithm vs proposed 

algorithm. 

 

Now the revised turnaround time and the average 

turnaround time is (29+17+3+6+9)/5 = 12.8ms. 

 
Table 10. Turnaround time of process in Table 6 According to our 

proposed algorithm. 

 

We can see that this algorithm reduces ((16.2-7)/14) * 100 

= 56.8% waiting time for the above example in comparison 

with the existing algorithm. We can also see a gradual 

decline in the turnaround time of the processes as more and 

more processes get executed. The decline can also be seen 

in the waiting time of processes as the CPU executes more 

and more processes. The intended and existing algorithms 

are contrasted in the “Fig 2” below. 
 

 
Figure 2. Turn Around time Comparison of existing algorithm vs 

proposed algorithm. 

VI.  CONCLUSION 
 

Utilizing a CPU scheduling algorithm in a multiprogram 

operating system is the single determinant of a computer's 

efficiency. In this paper, we examine the priority 

scheduling method to lower both the average waiting time 

and the average processing time. In the existing priority 

scheduling system, tasks of the same priority exhibit 

relatively elevated average waiting and turnaround times. 

Nevertheless, the investigated study suggests the potential 

for implementing a priority scheduling system that 

significantly reduces waiting and turnaround times for 

processes. The SJF scheduling's shortest procedures result 

in longer wait times for longer processes. Even though the 

lengthy procedure results in minimal average waiting times 

and average turnaround times, it may never be used. Low-

priority tasks that may be addressed by aging may suffer 

from starvation as a result of priority scheduling 

algorithms. For procedures with equal priority, the waiting 

time steadily grew. The waiting time for processes as well 

as their execution time are both dramatically reduced when 

using changed algorithms. 
 

REFERENCES 
 

[1] D. Goyal, “Comparative Analysis of Various Scheduling 

Algorithms,” International Journal of Advanced Research in 

Computer Engineering & Technology, Volume 2, Issue 4, pp. 

1488-1491, 2013. 
[2] Sonia Zouaoui, Lotfi Boussaid, Abdellatif Mtibaa, “Priority-

based round robin (PBRR) CPU scheduling algorithm”, 

International Journal of Electrical and Computer Engineering 

(IJECE) Vol. 9, No. 1, February 2019, pp. 190~202  

[3] C. Shekar, Karthik, “Analysis of Priority Scheduling Algorithm 

based on FCFS & SJF for Similar Priority Jobs [1],”  pp.1-4, 

2017. 
[4] P. Surendra Varma, “A FINEST TIME QUANTUM FOR 

IMPROVING SHORTEST REMAINING BURST ROUND 

ROBIN (SRBRR) ALGORITHM,” Journal of Global Research 

in Computer Science, Volume 4, No.3, pp.10-15, 2013. 

[5] O. Hani, M. Dorgham, “Improved Round Robin Algorithm: 

Proposed Method to Apply SJF using Geometric Mean” 

International Journal of Computer Science and Mobile 

Computing, Vol. 5, Iss. 11, pp.112-119, 2016. 

[6] A. Alsheikhy, R. Ammar, and R. Elfouly, “An improved 

dynamic Round Robin scheduling algorithm based on a variant 

quantum time,” In the Proceedings of the 2015 11th 

International Computer Engineering Conference, Egypt, pp.98-

104, 2015. 

[7] S. Elmougy, S. Sarhan, and M. Joundy, “A novel hybrid of 

Shortest job first and round Robin with dynamic variable 

quantum time task scheduling technique,” Journal of Cloud 

Computing, vol. 6, no. 1, Dec. 2017 

[8] G. Siva Nageswara Rao, R. Jayaraman, and S. V. N. Srinivasu, 

“Efficient PIMRR algorithm based on scheduling measures for 

improving real Time systems,” International Journal of 

Engineering and Technology(UAE), vol. 7, no. 2.32 Special 

Issue.32, pp.275–278, 2018. 

[9] M. R. Khan and G. Kakhani, “Analysis of Priority Scheduling 

Algorithm on the Basis of FCFS & SJF for Similar Priority 

Jobs,” International Journal of Computer Science and Mobile 

Computing, Vol. 4, Issue. 9, pp.324 – 331, 2015. 

[10] M. M. Rashid, M. N. Akhtar, “A new multilevel CPU 

Scheduling algorithm,” Journal of Applied Sciences, vol. 6, no. 

9, pp. 2036-2039, 2006. 

[11] J. Lee and K.  G. Shin, “Preempt a  job or not in EDF 

scheduling of uniprocessor systems,”  IEEE Trans.  Comput,  

vol. 63, no.  5, pp.1197–1206, 2014. 

0

10

20

30

P1 P2 P3 P4 P5

 T
im

e 

Waiting time 

Existing

proposed

0

5

10

15

20

25

30

35

P1 P2 P3 P4 P5

 T
im

e 

Turn around time 

Existing

proposed

Process Id Time(ms) 

Waiting time 

P1 17 

P2 9 

P3 0 

P4 3 

P5 6 

Process Id Time (ms) 

Turnaround time 

P1 29 

P2 17 

P3 3 

P4 6 

P5 9 



   Int. J. Sci. Res. in Network Security and Communication                                                                     Vol.11 (6), Dec 2023 

  © 2023, IJSRNSC All Rights Reserved                                                                                                                             8 

[12]  O. Hani and M. Dorgham “Improved Round Robin Algorithm : 

Proposed Method to Apply SJF using Geometric Mean” in the 

proceedings of 2019 2nd International Conference on Computer 

Applications & Information Security, vol.5, no.11, pp.112–120, 

2016. 

[13] S. Saeidi “Determining the Optimum Time Quantum Value in 

Round Robin Process Scheduling Method”, I.J. Information 

Technology and Computer Science, vol. 4, pp.67–73, 2012. 

[14] S. Banerjee, A. Chowdhury, S. Mukherjee, and U. Biswas “An 

Approach Towards Development of a New Cloudlet Allocation 

Policy with Dynamic Time Quantum” Aut. Control Comp. Sci., 

vol. 52, no. 3, pp.208–219, 2018. 

 

Authors Profile 

Mr. Irshad khan is a 4th-year B.tech 

computer science student at Khwaja 

Moinuddin Chishti Language 

University in Lucknow. He is 

Consistently maintaining a high GPA in 

computer science courses. a strong 

understanding of data structures and 

algorithms, coupled with practical 

experience in web development.  

Additionally, His familiarity with databases, including both 

SQL and MongoDB, reflects a comprehensive approach to 

handling and managing data. He possesses a strong aptitude 

for mathematics and a keen proficiency in problem-solving, 

He brings a solid foundation to tackle complex challenges 

and contribute to analytical problem-solving scenarios. He 

is well-equipped to navigate the dynamic landscape of 

computer science and contribute effectively to innovative 

solutions. 

 

Mr. Mohd Owais has been a student of 

Computer Science and Engineering at 

Khwaja Moinuddin Chishti Language 

University in Lucknow since July 2020. 

He is currently working as an intern in 

the Research and Development 

department of Bluebook Solutions 

Private Limited. He possesses a strong 

groundwork to address intricate 

challenges and play a valuable role in analytical problem-

solving situations. With the ability to adeptly navigate the 

ever-changing terrain of computer science, he is well-

prepared to make meaningful contributions to innovative 

solutions. 

 

Mrs. Saima Aleem serves as an  

Assistant Professor at Khwaja 

Moinuddin Chishti Language 

University in Lucknow, a role she has 

undertaken since July 2020. Currently, 

she is actively engaged as a co-project 

investigator in a research initiative 

supported by the Department of Higher 

Education, Uttar Pradesh Government. In her academic 

journey, she is pursuing a Ph.D. scholar at Integral 

University. Saima Aleem's areas of research expertise span 

across domains, encompassing Computer Networks, 

Artificial Intelligence, e-services, and e-governance. 

 

Mr. Tasleem Jamal is an Assistant 

Professor in the Department of 

Computer Science Engineering, Faculty 

of Engineering & Technology, Khwaja 

Moinuddin Chishti Language University 

in Lucknow, India, Tasleem Jamal's 

research is focused on LTE, sensor 

networks, MANET, IoT, Artificial 

Intelligence, Machine Learning and big data. He has a  

B.Tech and M.Tech from Zakir Hussain College of 

Engineering & Technology, AMU, Aligarh. Tasleem Jamal 

has over 7 years of teaching and research experience, He 

has published many papers in reputed journals. 

Additionally, he has presented papers at international 

conferences. Tasleem Jamal has also attended several short-

term courses, workshops, and seminars on topics such as 

Research Methodology, blockchain, Artificial Intelligence, 

Machine Learning, and more. 

 


