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Abstract— There is an in-depth discussion in this paper about the improvement of a system regarding tool wear monitoring 

in hard turning operation. Acoustic emission (AE) signals from metal cutting processes have been investigated for various 

purposes, including in-process tool wear monitoring. Hard turning is a machining process Nickel based alloys are difficult-to-

machine materials which are widely used in various applications. Tool wear is a major problem in these materials because of 

their high hardness. The present study is focusing on Inconel 718 with varying HRC (51, 53, and 55) and the tool employed 

here is ceramic. By using L9 orthogonal array extracted from taguchi method, taking input parameters such as speed, feed, 

depth of cut and hardness. Taking vibration signal data as an input to ANOVA and Grey relation analysis (GRA) which 

identifies the optimal and most dominant feature (Root Mean Square(RMS), Crest Factor(CF), Skewness(Sk), Kurtosis(Ku), 

Absolute Deviation(AD), Mean, Standard Deviation(SD), Variance, peak, Frequency and Time in the tool wear operation. 
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I. INTRODUCTION 

Nickel-based super alloys are widely used in aerospace appli- 

cations due to their magnificent mechanical properties 

maintained at high temperature and their corrosion 

resistance. Machining of these alloys is still a challenge, 

especially in dry machining. Super alloys characteristics like 

high temperature, tensile and shear strength, work hardening, 

reduced thermal conductivity,  built-up edge formation and 

the presence of abrasive particles in their microstructures etc. 

are  induce high thermo-mechanical loads at the tool-chip 

interface resulting in significant wear of the tool [1]. Tool 

wear strongly influences production costs and affect surface 

integrity of the component [2,3]. Cutting tool selection is an 

important factor when machining Ni based alloys. Cemented 

carbides have been used for decades and the use of 

multilayer coatings (TiN,TiCN) have improved their 

suitability for machining Ni-based alloys. Cemented carbide 

tools should not be used to machine nickel-based alloys at 

high speed since they cannot withstand the conditions of 

extreme high temperature and stress in the cutting zone. In 

general, the recommended cutting speeds range up to 30 

m/min for uncoated inserts and up to 100 m/min when 

machining nickel-based alloys using cemented carbide tools 

properly coated [4]. Ceramic tool have superior hot hardness 

and can be used at speeds around an order of magnitude 

higher than the coated carbide cutting tools. Ceramic tools 

have been used increasingly in cutting operations of Ni 

alloys. High cutting speed can be achieved with the use of 

whisker reinforced ceramics [5]. 

 

 In metal-cutting processes tool wear is a complex 

phenomenon occurring in various ways. Normally, the 

surface finish is mainly affected by a worn tool and therefore 

there is a need to develop TCM systems that alert the 

operator to the tool wear state, thereby avoiding undesirable 

effects [6]. TCM systems that were improved in the past are 

comprehensively reviewed in a number of articles.  

 

Micheletti [7] discussed different types of sensors for “in-

process” measurement of tool wear. Ravindra and Srinivas 

[8] conducted  experiments for sharp tools and various stages 

of flank wear. To discuss the wear time and wear force 

relationship in turning, and in estimating tool wear a 

mathematical model based on multiple regression analysis 

was developed.  

 

 TCM not only reduces the manufacturing expenses 

by lowering downtime and unnecessary cutting tool changes, 

but also improves the product quality by eliminating chatter, 

excessive tool deflection and poor part surface finish[9].  

  

 Many methods for TCM had been put forward in 

the past but not many were universally successful because of 
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the complex nature in machining. The classification of 

sensors as direct (radioactive, optical, electric resistance, etc) 

and indirect (AE, spindle motor current, vibration, cutting 

force, etc) sensing methods are successful methods. Recent 

studies have concentrated on the improvement of indirect 

monitoring methods for cutting processes. AE being the most 

efficient indirect sensing method.  

 

 The benefit of using AE to detect tool wear lies in 

two aspects: its frequency range is very high than the 

vibrations of machines and environmental noises  Most of 

them use analogue root mean square of the signal to observe 

tool wear or find out breakages.  

 

Damodara samy [10] discussed the combined effect of radial 

force, feed force and AE (RMS value) in modeling the tool 

flank wear for turning operation. AE is considered as a 

phenomenon whereby transient elastic waves are produced 

by the rapid release of energy from a localized source or 

source within the material, or the transient elastic wave so 

produced.  AE signals produced during turning can be 

continuous or transient/burst type.  

 

Jemielniak et al. reviewed various AE methods [11,12] 

applied for TCM and put forward that due to a wide sensor 

dynamic range, AE can find out most of the phenomena in 

machining, although significant data acquisition and signal 

processing is required. Dilma [13] also spoke about some AE 

techniques used for flank wear detection [14,15]. The author 

discussed that AE can be deemed only suitable as an 

additional sensing method for growth in reliability of TCMS 

due to complexity involved in selection of the location for 

sensor mounting and signal analysis techniques.  

 

Rang Wala and Dornfeld [16] performed sensor integration 

using AE along with other signals for TCM. The RMS of AE 

was observed to be sensitive to the degree of flank wear.  

Heiple et al. [17] observed AE during turning of the cutting 

tool as phenomena of heat treatment and observed that the 

primary source of AE was sliding friction between the tool 

flank and the work piece. It was finalized that since changes 

in AE with tool wear were strongly material dependent, the 

single characteristic change in AE with tool wear is valid for 

all material was unlikely to exist.  

 

Cho and Komvopoulos [18] found the relationship between 

AE RMS and changes in tool–work piece contact area due to 

wear, changes in the interfacial friction coefficient, and the 

cutting tool material properties resulting from various 

coating materials. The tool life calculated using AE RMS 

was in good correlation with that found with maximum wear 

land width.  

 

Chungchoo and Saini [19] improved a model to relate AE 

rms in the turning operation with the flank and crater wear. 

The improved model accurately predicted the flank wear 

during turning.  

 

In a brief review, Scheffer et al. [20] used AE rms signals 

along with other signals in order to improve a tool wear 

monitoring system for hard turning.  

 

Sun et al. [21] developed a tool condition observing system 

using efficient feature set taken from AE signals along with 

support vector machine (SVM). The method that is put 

forward could identify flank wear effectively, and 

manufacturing losses in industries due to under- or over-

prediction of flank wear was lowered. It was seen that ring 

down count parameter of AE signals showed a significant 

growth with the tool wear.  

 

Bhuiyan et al. [22] improved a dummy tool holder apparatus 

in order to fore see tool wear from AE measurement.  

 

Kondala Rao[23] found that dominant features of the coated 

carbide tool with the help of AE sensing technique. The 

present paper focusing  to study the  sequence of dominant 

features  of ceramic tool wear  by using  AE signals.  

 

II. DOMINANT FEATURE 

In various industrial applications, different features are 

computed. However, it has been identified that, beyond a 

certain threshold, including additional features leads to a 

worse performance. However, the selection of features 

affects various aspects of the recognition process, such as 

accuracy, learning time, and essential sample size. Vitally, 

computing more features take to an increase in time and 

computational space complexity of the recognition process.  

 

Various methods for tool wear monitoring were proposed in 

the past, but during the feature deriving stage, the most 

dominant features which correlate well with tool wear and 

not affected by process conditions are developed from the 

prepared signals is not specifically mentioned. Hence this 

project made an attempt to find out the dominant feature for 

both AE and Vibration Signatures. In this paper,  GRA is 

used as statistical decision tool for identifying the dominant 

features which are most appropriate in predicting the time 

series of tool wear in industrial turning machines using an 

online, real-time, and indirect approach, with data from 

installed AE and vibration sensors 

 

III. METHODOLOGY 

The proposed methods were tested using a single point 

cutting tool in an industrial high-speed turning machine. AE 

measurements were taken during a period using an AE 

sensor. During the measuring period, the tool was 

periodically extracted from the chuck, and tool wear was 

measured using ‘Tool Makers microscope’. This yielded a 

baseline time plot of actual tool wear versus time. Eleven 

features, commonly used for machinery monitoring in 
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industries, were calculated from the measured AE data. 

ANOVA was applied to observe the most contributing 

feature among the eleven features. The GRA method was 

then used to observe the optimal feature values with the help 

of Artificial Neural network (ANN). 

 
IV. GREY RELATIONAL ANALYSIS 

The Grey Relational Analysis (GRA) which is involved 
with the Taguchi method represents a new approach to 
optimization. The grey theory is based on the random 
uncertainty of small samples which developed into an 
evaluation technique to solve certain problems of system that 
are complex and have incomplete information. A system for 
which the accurate information is completely known is a 
white system, while a system for which the relevant 
information is completely unknown is a black system. Any 
system between these extremities is a grey system having 
poor and limited information.GRA which is a normalization 
evaluation technique is extended to affect the complicated 
multi-performance characteristics. 

V. EXPERIMENTAL WORK 

A. Work material, Tools and measurement of flak wear  

Turning experiments were carried out on a CNC lathe 

Lokesh TL250 and its capacity 20KW. Experiments were 

conducted on a round bar (50 mm dia and 10Kg weight) of 

Inconel 718, hardness (51,53 and 55HRC) with Ceramic 

insert(TNMG 160408 A65) with tool holder MTJNL 

2020K16 without cutting fluid for this investigation. 

  

The flank wear of tool insert was measured using Elshaddai 

Engineering Equipments make Tool maker’s 

microscope(LT-24) with a magnification of 30x ,with X-Y 

movement on ball bearing slides with 25mm graduated 

micrometers and least count 0.001mm. The flank wear was 

measured for every 120mm length of cut. 

B. Cutting conditions 

  

Since the focus of this work has been to find most 

dominant feature of tool wear with ceramic insert with dry 

machining, experiments have been conducted at four cutting 

parameters (speed, feed rate, depth of cut and hardness) were 

taken with three levels for each cutting parameter were 

summarized in Table 1. 

 

Table 1 Experimental Factors and their levels 

Levels of 
the 

experimental 
factors 

Factors 

Speed, 
N (rpm) 

Feed rate, 
f 

(mm/rev) 

Depth of 
cut, d 
(mm) 

Hardness 
(HRC) 

1 50 0.05 0.15 51 
2 65 0.075 0.2 53 
3 80 0.1 0.25 55 

 

C.Measurement and processing of cutting AE signals 

 The number of experiments and the combinations of 

parameters for each run was obtained by using Taguchi’s L9 

orthogonal array. The  AE signals have been recorded at 

various stages of cutting until failure of the tool. The  AE 

signals were measured using a Kistler 8152C AE-

piezoelectric sensor has been mounted on top of the tool 

holder with magnetic clamp(Kistler 8443B), and  placed 

possibly near to the tool-insert. The AE sensor has a 

frequency range from 50 kHz to 400 kHz 1 Hz to 10 kHz and 

sensitivity of the sensor is 57 dBref 1V/(m/s). A KISTLER-

5125C type coupler is used to pass the signal through. The 

sensor sensed the AE signals in the z-direction.The trained 

signal is finally sent to laptop with LABVIEW based 

software for display and storage. The vibration signal data is 

stored in a excel file for further processing and analysis. 

 
VI. RESULTS AND DISCUSSION 

         The nine experimental runs were performed based on 

the combinations from Table 2 with each experimental run 

carried for a length of 120 mm. All the operations on CNC 

were performed using numerical control part programming. 

Tool flank wear measurements have been carried out using 

high resolution Tool maker’s microscope. The tool wear 

obtained from tool maker’s microscope were given in the 

table 2 

 
The AE signals of Fig.1 have been captured for all the 
combinations cited in Table 2 cutting speed, feed,depth of 
cut and hardness of the material. 

Various Features were calculated by using Lab View 
software and MATLAB for each and every signals collected 
by AE  sensors are shown in table.3 

These features and corresponding output (tool wear) 
trained with Neural Network by considering the parameters 
got high accuracy of 98%. The network diagram and the 
regression graphs were shown in 2 and 3, from this it is 
observed that the error is almost all minimised. Based upon 
the training the performance curves were plotted which were 
shown in Fig. 4 and Fig.5 

Table 2 Manual Tool Wear from Tool maker’s microscope 

EXP 

NO 

SPEED 

(m/min) 

FEED 

(mm/rev) 

DOC 

(mm) 

HARDNESS 

(HRC) 

Tool 

Wear 

(mm) 

1 1 1 1 1 0.129 

2 1 2 2 2 0.149 

3 1 3 3 3 0.14 

4 2 1 2 3 0.19 

5 2 2 3 1 0.118 

6 2 3 1 2 0.116 

7 3 1 3 2 0.193 

8 3 2 1 3 0.122 

9 3 3 2 1 0.111 
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Figure 1   AE signal captured in hard turning 

After obtaining satisfactory relation between features and 
outputs in neural network training, we simulated the results 
for different variations in the features and obtained the 
outputs which was presented in table 4. 

 

Figure 2 Neural Network for AE Signals 

 

Figure 3 Regression Graph for AE signals 

 

Figure 4 Performance Graph for AE signals 

 

Figure 5 Training State Graph for AE 
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Table 3 All Features from Acoustic Emission Signals for Ceramic insert 

EXP.NO 1 2 3 4 5 6 7 8 9 

RMS 19.2333 17.572 19.3092 19.7097 19.4146 15.408 19.365 19.2711 16.3725 

CF 0.6653 0.65939 0.6565 0.6638 0.6598 0.6658 0.6658 0.664 0.6566 

SKW 0.0454 0.0454 -0.0594 -0.0099 -0.0607 0.0051 0.022 -0.0201 -0.0607 

KURT 1.5037 1.5024 1.5095 1.4994 1.5032 1.5024 1.5017 1.5019 1.5079 

AD 4.6608 6.6373 0.0992 9.424 0.9653 1.0974 9.3384 0.3959 0.7661 

MEAN 16.6857 16.0826 19.152 11.3088 19.9999 18.2684 10.6458 19.3959 18.769 

SD 6.748 8.2616 0.1367 9.5982 1.1083 1.4145 9.4382 0.7118 2.7493 

VAR 45.536 68.2537 0.0187 92.1252 1.2283 2.0009 89.0798 0.5067 7.5584 

PEAK 20.2762 22.0136 19.5547 19.7682 21.8875 19.4507 19.365 21.811 19.5807 

FRE 0.005618 0.008 0.047619 0.008403 0.012821 0.032787 0.005882 0.026316 0.020833 

TIME 177.9993 125 21.00002 118.9995 77.99704 30.49989 169.9986 37.9997 48.00077 

 

Table 4 Simulated Neural Network Results of ceramic  insert for AE 

EXP 

NO 
RMS CF SKW KURT AD MEAN SD VAR PEAK FRE TIME 

TW 

(mm) 

1 15.408 0.656 -0.0607 1.499 0.099 10.6458 0.1367 0.0187 19.365 0.00561 21.0000 0.1998 

2 15.408 0.656 -0.0607 1.499 4.761 15.3228 4.8674 46.071 20.6893 0.02661 99.4996 0.1734 

3 15.408 0.656 -0.0607 1.499 9.424 19.9999 9.5982 92.125 22.0136 0.04761 177.999 0.2167 

4 15.408 0.661 -.00765 1.504 0.099 10.6458 0.1367 46.071 20.6893 0.02661 177.999 0.1733 

5 15.408 0.661 -.00765 1.504 4.761 15.3228 4.8674 92.125 22.0136 0.04761 21.0000 0.1782 

6 15.408 0.661 -.00765 1.504 9.424 19.9999 9.5982 0.0187 19.365 0.00561 99.4996 0.1899 

7 15.408 0.665 0.0454 1.509 0.099 10.6458 0.1367 92.125 22.0136 0.04761 99.4996 0.1995 

8 15.408 0.665 0.0454 1.509 4.761 15.3228 4.8674 0.0187 19.365 0.00561 177.999 0.2179 

9 15.408 0.665 0.0454 1.509 9.424 19.9999 9.5982 46.071 20.6893 0.02661 21.0000 0.2340 

10 17.558 0.656 
-

0.00765 
1.509 0.099 15.3228 9.5982 0.0187 20.6893 0.04761 21.0000 0.2614 

11 17.558 0.656 -.00765 1.509 4.761 19.9999 0.1367 46.071 22.0136 0.00561 99.4996 0.1699 

12 17.558 0.656 -.00765 1.509 9.424 10.6458 4.8674 92.125 19.365 0.02661 177.999 0.1695 

13 17.558 0.661 0.0454 1.499 0.099 15.3228 9.5982 46.071 22.0136 0.00561 177.999 0.2318 

14 17.558 0.661 0.0454 1.499 4.761 19.9999 0.1367 92.125 19.365 0.02661 21.0000 0.1694 

15 17.558 0.661 0.0454 1.499 9.424 10.6458 4.8674 0.0187 20.6893 0.04761 99.4996 0.1727 

16 17.558 0.665 -0.0607 1.504 0.099 15.3228 9.5982 92.125 19.365 0.02661 99.4996 0.2505 

17 17.558 0.665 -0.0607 1.504 4.761 19.9999 0.1367 0.0187 20.6893 0.04761 177.999 0.2229 

18 17.558 0.665 -0.0607 1.504 9.424 10.6458 4.8674 46.071 22.0136 0.00561 21.0000 0.2038 

19 19.709 0.656 0.0454 1.504 0.099 19.9999 4.8674 0.0187 22.0136 0.02661 21.0000 0.1744 

20 19.709 0.656 0.0454 1.504 4.761 10.6458 9.5982 46.071 19.365 0.04761 99.4996 0.1903 

21 19.709 0.656 0.0454 1.504 9.424 15.3228 0.1367 92.125 20.6893 0.00561 177.999 0.1751 

22 19.709 0.661 -0.0607 1.509 0.099 19.9999 4.8674 46.071 19.365 0.04761 177.999 0.1764 

23 19.709 0.661 -0.0607 1.509 4.761 10.6458 9.5982 92.125 20.6893 0.00561 21.0000 0.1749 

24 19.709 0.661 -0.0607 1.509 9.424 15.3228 0.1367 0.0187 22.0136 0.02661 99.4996 0.1726 

25 19.709 0.665 -.00765 1.499 0.099 19.9999 4.8674 92.125 20.6893 0.00561 99.4996 0.2295 

26 19.709 0.665 -.00765 1.499 4.761 10.6458 9.5982 0.0187 22.0136 0.02661 177.999 0.2551 

27 19.709 0.665 -.00765 1.499 9.424 15.3228 0.1367 46.071 19.365 0.04761 21.0000 0.1863 

 

 



   Int. J. Sci. Res. in Network Security and Communication                                       Vol.7(1), Mar  2019, E-ISSN: 2321-3256 

  © 2019, IJSRNSC All Rights Reserved                                                                                                                                    6 

Table 4 Simulated Neural Network Results of ceramic  insert for AE 

 

The average grey relational grade of each factor at each 

level, shown in Table 5. The optimal level for each factor 

was obtained based on ‘higher is better’ characteristic. From 

Table 6, the optimal level in each factor was highlighted. The 

dominant feature was obtained by taking the maximum value 

of all factors.. Thus the dominating sequence was RMS, AD, 

CF, SD, Mean, Ku, Frequency, Variance, Sk, Peak, Time.  

 

ANOVA tests the null hypothesis that the means of each 

level of parameters are equal and the alternative hypothesis is 

that at least one of the means is not equal. It is obtained by 

measuring the sum of squared deviations from the total mean 

of the grey relational grade. In addition, the F-test was used 

to identify the turning parameters significance on the output 

responses. Usually, the change of turning parameter has a 

significant effect on the output response when the F value is 

large than the tabulated value. The ANOVA for the overall 

grey relational grade was shown in Table 7. 

EXP 

NO 
RMS CF SKW KURT AD MEAN SD VAR PEAK FRE TIME 

TW 

(mm) 

1 15.408 0.656 -0.0607 1.499 0.099 10.6458 0.1367 0.0187 19.365 0.00561 21.0000 0.1998 

2 15.408 0.656 -0.0607 1.499 4.761 15.3228 4.8674 46.071 20.6893 0.02661 99.4996 0.1734 

3 15.408 0.656 -0.0607 1.499 9.424 19.9999 9.5982 92.125 22.0136 0.04761 177.999 0.2167 

4 15.408 0.661 -.00765 1.504 0.099 10.6458 0.1367 46.071 20.6893 0.02661 177.999 0.1733 

5 15.408 0.661 -.00765 1.504 4.761 15.3228 4.8674 92.125 22.0136 0.04761 21.0000 0.1782 

6 15.408 0.661 -.00765 1.504 9.424 19.9999 9.5982 0.0187 19.365 0.00561 99.4996 0.1899 

7 15.408 0.665 0.0454 1.509 0.099 10.6458 0.1367 92.125 22.0136 0.04761 99.4996 0.1995 

8 15.408 0.665 0.0454 1.509 4.761 15.3228 4.8674 0.0187 19.365 0.00561 177.999 0.2179 

9 15.408 0.665 0.0454 1.509 9.424 19.9999 9.5982 46.071 20.6893 0.02661 21.0000 0.2340 

10 17.558 0.656 
-

0.00765 
1.509 0.099 15.3228 9.5982 0.0187 20.6893 0.04761 21.0000 0.2614 

11 17.558 0.656 -.00765 1.509 4.761 19.9999 0.1367 46.071 22.0136 0.00561 99.4996 0.1699 

12 17.558 0.656 -.00765 1.509 9.424 10.6458 4.8674 92.125 19.365 0.02661 177.999 0.1695 

13 17.558 0.661 0.0454 1.499 0.099 15.3228 9.5982 46.071 22.0136 0.00561 177.999 0.2318 

14 17.558 0.661 0.0454 1.499 4.761 19.9999 0.1367 92.125 19.365 0.02661 21.0000 0.1694 

15 17.558 0.661 0.0454 1.499 9.424 10.6458 4.8674 0.0187 20.6893 0.04761 99.4996 0.1727 

16 17.558 0.665 -0.0607 1.504 0.099 15.3228 9.5982 92.125 19.365 0.02661 99.4996 0.2505 

17 17.558 0.665 -0.0607 1.504 4.761 19.9999 0.1367 0.0187 20.6893 0.04761 177.999 0.2229 

18 17.558 0.665 -0.0607 1.504 9.424 10.6458 4.8674 46.071 22.0136 0.00561 21.0000 0.2038 

19 19.709 0.656 0.0454 1.504 0.099 19.9999 4.8674 0.0187 22.0136 0.02661 21.0000 0.1744 

20 19.709 0.656 0.0454 1.504 4.761 10.6458 9.5982 46.071 19.365 0.04761 99.4996 0.1903 

21 19.709 0.656 0.0454 1.504 9.424 15.3228 0.1367 92.125 20.6893 0.00561 177.999 0.1751 

22 19.709 0.661 -0.0607 1.509 0.099 19.9999 4.8674 46.071 19.365 0.04761 177.999 0.1764 

23 19.709 0.661 -0.0607 1.509 4.761 10.6458 9.5982 92.125 20.6893 0.00561 21.0000 0.1749 

24 19.709 0.661 -0.0607 1.509 9.424 15.3228 0.1367 0.0187 22.0136 0.02661 99.4996 0.1726 

25 19.709 0.665 -.00765 1.499 0.099 19.9999 4.8674 92.125 20.6893 0.00561 99.4996 0.2295 

26 19.709 0.665 -.00765 1.499 4.761 10.6458 9.5982 0.0187 22.0136 0.02661 177.999 0.2551 

27 19.709 0.665 -.00765 1.499 9.424 15.3228 0.1367 46.071 19.365 0.04761 21.0000 0.1863 
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Table 5  The normalized values, deviation values and grey relational grades of Ceramic insert for AE signal 

 

NORMALISED VALUES ABSOLUTE DIFFERENCE GREY COEFFICIENTS 

  EXP 

NO 
NTW NSR NTM DTW DSR DTM 

GRC-

TW 
GRC-SR 

GRC-

TEMP 

TOTAL 

GRC 
GRADE 

1 0.669566 0.000118 0.856377 0.330434 0.999882 0.143623 0.602095 0.33336 0.776852 1.712306 0.570769 

2 0.95629 0.060011 0.522125 0.04371 0.939989 0.477875 0.919608 0.347225 0.511313 1.778146 0.592715 

3 0.486028 1 0.03451 0.513972 0 0.96549 0.49311 1 0.341183 1.834293 0.611431 

4 0.957812 0.181778 0.614348 0.042188 0.818222 0.385652 0.92219 0.379299 0.564556 1.866045 0.622015 

5 0.904317 0.645499 0.735407 0.095683 0.354501 .264593 0.839372 0.585137 0.653942 2.078451 0.692817 

6 0.776558 0.117476 0.143455 0.223442 0.882524 0.856545 0.69114 0.361657 0.368584 1.421381 0.473794 

7 0.672176 0.214801 0 0.327824 0.785199 1 0.603993 0.389045 0.333333 1.326371 0.442124 

8 0.472763 0.123543 0.028674 0.527237 0.876457 0.971326 0.486743 0.363251 0.33983 1.189823 0.396608 

9 0.29738 0.080932 0.004739 0.70262 0.919068 0.995261 0.415759 0.352344 0.33439 1.102492 0.367497 

10 0 0 0.044628 1 1 0.955372 0.333333 0.333333 0.343555 1.010221 0.33674 

11 0.994346 0.212553 0.212305 0.005654 0.787447 0.787695 0.988818 0.388365 0.388291 1.765474 0.588491 

12 0.999021 0.629076 0.764726 0.000979 0.370924 0.235274 0.998047 0.574103 0.680019 2.252169 0.750723 

13 0.321627 0.958247 0.002656 0.678373 0.041753 0.997344 0.424314 0.92293 0.333924 1.681168 0.560389 

14 1 0.99133 0.270169 0 0.00867 0.729831 1 0.982955 0.40656 2.389515 0.796505 

15 0.964336 0.922974 1 0.035664 0.077026 0 0.933421 0.866513 1 2.799934 0.933311 

16 0.118517 0.980529 0.025326 0.881483 0.019471 0.974674 0.36193 0.962518 0.339058 1.663506 0.554502 

17 0.418071 0.960348 0.568605 0.581929 0.039652 0.431395 0.462138 0.926523 0.536829 1.92549 0.64183 

18 0.625639 0.937533 0.413835 0.374361 0.062467 0.586165 0.571846 0.888941 0.460335 1.921123 0.640374 

19 0.945526 0.845328 0.748387 0.054474 0.154672 0.251613 0.901755 0.763741 0.665236 2.330732 0.776911 

20 0.772317 0.994378 0.965759 0.227683 0.005622 0.034241 0.687112 0.98888 0.935908 2.611901 0.870634 

21 0.93748 0.998698 0.901866 0.06252 0.001302 0.098134 0.888857 0.997403 0.835933 2.722193 0.907398 

22 0.924214 0.984198 0.009218 0.075786 0.015802 0.990782 0.868379 0.969365 0.335394 2.173138 0.724379 

23 0.93998 0.968959 0.32356 0.06002 0.031041 0.67644 0.892826 0.941547 0.425011 2.259384 0.753128 

24 0.965206 0.948482 0.896613 0.034794 0.051518 0.103387 0.93494 0.906589 0.828656 2.670184 0.890061 

25 0.346635 0.999112 0.053123 0.653365 0.000888 0.946877 0.433514 0.998228 0.345572 1.777314 0.592438 

26 0.068501 0.89797 0.785662 0.931499 0.10203 0.214338 0.349284 0.830523 0.699949 1.879757 0.626586 

27 0.81581 0.96452 0.977892 0.18419 0.03548 0.022108 0.730791 0.933742 0.957657 2.62219 0.874063 

 

Table 6 Average grey relational grade of AE for each factor at each level for Ceramic insert 

LEVEL 
Factors 

RMS CF SKW KURT AD MEAN SD VAR PEAK FRE TIME 

1 0.529974 0.667312 0.664354 0.684245 0.575585 0.689963 0.703695 0.627401 0.667997 0.609265 0.645423 

2 0.644763 0.716267 0.617519 0.686697 0.662146 0.645033 0.677809 0.648951 0.638564 0.664168 0.659786 

3 0.779511 0.570669 0.672375 0.583306 0.716517 0.619253 0.572745 0.677896 0.647687 0.680814 0.64904 
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Table 7  Results of ANOVA of Ceramic insert for AE signal

FACTORS 
SUM OF 

SQUARES 
DF 

MEAN 

SQUARE 

F-

VALUE 

P-

VALUE 

% 

CONTRIBUTION 

RMS 0.280805 2 0.140403 26.25579 0.005 38.89885 

CF 0.090932 2 0.045466 8.502317 0.0363 12.59647 

SKW 0.015802 2 0.007901 1.47747 0.3308 2.188923 

KURT 0.025232 2 0.012616 2.359242 0.2105 3.495298 

AD 0.098805 2 0.049403 9.238472 0.0317 13.68711 

MEAN 0.062654 2 0.031327 5.85822 0.0648 8.679154 

SD 0.08657 2 0.043285 8.094426 0.0393 11.99217 

VAR 0.011556 2 0.005778 1.080497 0.4215 1.600794 

PEAK 0.004086 2 0.002043 0.382073 0.7049 0.566054 

FRE 0.023049 2 0.011525 2.15516 0.2317 3.192943 

TIME 0.001005 2 0.000502 0.093925 0.9123 0.139154 

ERROR 0.02139 4 0.005347 
  

2.963069 

TOTAL 0.721886 26 
   

100 

 

VII. 7.CONCLUSIONS 

 Using both Taguchi method and GRA to observe the 

dominant feature to find the tool wear in TCM has been 

reported  

 Various Features were estimated from the LAB VIEW 

and MAT LAB software and observed that Mean, 

Variance, Absolute Deviation and Peak were observed as 

constant for all the experiments which shows these 

features are not affecting the tool wear. 

 A Neural Network tool in MATLAB was used to train the 

remaining Features to get the relation between tool wear 

and the features and observed that around 98 % accuracy.  

 Tool wear was calculated by Simulating Neural Network, 

Features consider as input data from L27 Taguchi 

orthogonal array.  

  The Simulated data was analyzed by Grey relational 

method and obtained grey grade, which is used to find 

out the dominant feature for the TCM.  

 The dominant features ranking sequence for AE signal 

were obtained as RMS, AD, CF, SD, Mean, Ku, 

Frequency, Variance, Sk, Peak, Time..  

 ANOVA analysis has been carried out for the simulated 

data and grey codes, identified that the same features 

ranking Sequence was obtained for AE signal  
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