References
[1]. E.O.Ezugwu,Key, “Key improvements in the machining of difficult to cut aero space super alloys”, International Journal of Machine Tools and Manufacture, vol.45, issues.12–13, pp.1353–1367, 2005.
[2]. ChaoXue,WuyiChen, “Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy”, Wear, vol.270, issues.11–12, pp.895–902,2011.
[3]. A.Munoz-Sanchez, .A.Canteli,J.L. Cantero, M.H.Migue lez, “Numerical analysis of the tool wear effect in the machining induced residual stresses”, Simulation Modelling Practice and Theory, vol.19, issue.2, pp.872–886,2011.
[4]. S.Olovsjo, L.Nyborg, “Influence of microstructure on wear behaviour of uncoated WC tools in turning of Alloy 718 and Wasp alloy”, Wear, vol.282, issue.283, pp.12–21, 2012.
[5]. Altin,M.Nalbant,A.Taskesen, “The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools”, Materials Design, vol.28, issue.9, pp.2518–2522,2007.
[6]. Xiaozhi C, Beizhi L, “AE method for tool condition monitoring based on wavelet analysis”, Int J Adv Manufacturing Technology, vol.33, issue.9-10 pp.968-976,2007.
[7]. Micheletti CF, Koening W, Victor HR, “In-process tool wear sensors for cutting operations”,Ann CIRP, vol.25, pp.483-496, 1976.
[8]. Ravindra HV, Srinivas YG, Krishnamurthy R, “Modeling for tool wear based on cutting forces in turning”, Wear, vol.169, issue.1, pp.25-32, 1993.
[9]. LI Dan, J. Mathew, “Tool wear and failure monitoring techniques for turning a review”, Int. J.Machine Tools Manufact. Vol.30, Issue.4, pp.579-598, 1990.
[10]. Damodara samy S, raman S, “Inexpensive system for classifying tool wear states using pattern recognition”, Wear, vol.170, issue.2, pp.149-160, 1993.
[11]. Kannatey-Asibu E Jr, Dornfeld DA, “A study of tool wear using statistical analysis of metal cutting acoustic emission”, Wear, vol. 76, issue.2, pp.247-261, 1982.
[12]. Jemielniak K, Bombinski S, “Hierarchical strategies in tool wear monitoring”, Proc IME B J Eng Manuf, vol.220, issue.3, pp.375–381, 2006.
[13]. Dimla De, “sensor signals for tool wear monitoring in metal cutting operations: A review of methods”, Int J Machine Tool manuf, vol.40, issue.8, pp.1073-1098, 2000.
[14]. Moriwaki T, Tobito M, “A new approach to automatic detection of life of coated tool based on AE measurement”, Trans ASME J England, vol.112, issue.3, pp.212-218, 1990.
[15]. Blum T, Inasaki I, “A study on AE from the orthogonal cutting process”, J England, vol.112, issue.3, pp.203-211, 1990.
[16]. Rangwala S, Dornfeld D, “Sensor integration using neural networks for intelligent tool conditioning monitoring”, ASME J England, vol.112, issue.13, pp.219-228, 1990.
[17]. Heiple CR, Carpenter SH, Armentrout DL, McManigle AP, “AE from single point machining : source mechanisms and signal changes with tool wear”, Mater Eval, vol.52, issue.5, pp.590-596, 1994.
Cho ss, Komvopoulos K, Correlation between AE and wear of multi-layer ceramic coated carbide tools” Journal of Manuf Sci Eng, vol.119, issue.2, pp.238-246, 1997.
[18]. Chungchoo C, Saini D, “A computer algorithm for flank and crater wear estimation in CNC turning operations”, .Int J of Machine Tool Manuf, vol. 42, issue.13, pp.1465-1477, 2002.
[19]. Scheffer C, Kratz H, Heyns PS, Klocke F “Development of a tool wear monitoring system for hard turning”, Int J machine Tool manuf, vol. 43, issue.10, pp.973-985, 2003.
[20]. Sun J, Hong GS, Rahman M, Wong YS, “Improved performance evaluation of tool condition identification by manufacturing loss consideration”, Int J of Production research, vol. 43, issue.6, pp.1185-1204, 2005.
[21]. Bhuiyan M, Choudhary I, Yusoff N, “A new approach to investigate tool condition using dummy tool holder & sensor setup”, Int J Adv Manuf Technnology, vol.61, issue.5-8, pp.1-15, 2011.
[22]. Kondala Rao D, Srinivas K, “An analysis of feature identification for tool wear monitoring by using acoustic emission”, Traitment du signal, vol.34, issue.3-4, pp.117-135, 2017.