References
[1] R.O. Abel, S. Dasgupta, J. G. Kuhl, “Coordinated fault-tolerant controlof autonomous agents: Geometry and communications architecture”, Proceeding of IFAC World Congress, Czech Republic, pp.19-27, 2005.
[2] R.O. Abel, S. Dasgupta, J.G. Kuhl, “The relation between redundancyand convergence rate in distributed multi-agent formation control”, Proceeding of 48th IEEE ConferenceDecision and Control, China, pp. 3977-3982, 2008.
[3] B.D.O. Anderson, Z. Lin, M. Deghat, “Combining distance-basedformation shape control with formation translation”, Developments in Control Theory towards Glocal Control: IET, India, pp. 121-130, 2012.
[4] B.D.O. Anderson, C. Yu, B. Fidan, J. M. Hendrickx, “Rigid graphcontrol architectures for autonomous formations”, IEEE Control System Managment, Vol.28, no.6, pp.48-63, 2008.
[5] H. Bai, M. Arcak, J.T. Wen, “Adaptive design for reference velocityrecovery in motion coordination”, Syst. & Control Letter, vol.57, no.8, pp. 602-610, 2008.
[6] M. Basiri, A. N. Bishop, and P. Jensfelt, “Distributed control of triangularformations with angle-only constraints”, System & Control Letter, Vol.59, No.2, pp. 147-154, 2010.
[7] M. Cao, B.D.O. Anderson, A.S. Morse, C. Yu, “Control of acyclic formations of mobile autonomous agents”, Proceeding of 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp.1187-1192, 2008.
[8] M. Cao, A. S. Morse, C. Yu, B.D.O. Anderson, S. Dasgupta, “Maintaininga directed, triangular formation of mobile autonomous agents”, Communication Information and System, Vol.11, No.1, pp.1-16, 2011.
[9] S. Coogan, M. Arcak, “Scaling the size of a formation using relativeposition feedback”, Automatica, Vol.48, No.10, pp. 2677-2685,2012.
[10] J. Cortés, “Global and robust formation-shape stabilizatioin of relativesensing networks”, Automatica, Vol.45, No.10, pp.2754-2762, 2009.
[11] D. F. Davidenko, “Algorithms for λ-matrices”, Soviet Mathematics, Vol.1, No.1, pp. 316-319, 1960.
[12] D.V. Dimarogona and K.H. Johansson, “On the stability of distance based formation control”, in Proceeding 47th IEEE Conference Decision and Control Cancun, Mexico, pp. 1200-1205, 2008.
[13] D.V. Dimarogona, K.H. Johansson, “Further results on the stability ofdistance-based multi-robot formations”, in Proceeding 2009 American Control Conference, MO, pp. 2972-2977, 2009.
[14] W. Ding, G. Yan, Z. Lin, “Collective motions and formations underpursuit strategies on directed acyclic graphs”, Automatica, Vol.46, No.1, pp.174-181, 2010.
[15] F. Dorfler, B. Francis, “Geometric analysis of the formation problemfor autonomous robots”, IEEE Transaction Automation Control, Vol.55, No.10, pp. 2379-2384, 2010.
[16] T. Eren, “Using angle of arrival (bearing) information for localizationin robot networks”, Turkish J. Elect.Eng., Vol.15, No.2, pp. 169-186,2007.
[17] T. Eren, P. N. Belhumeur, and A. S. Morse, “Closing ranks in vehicleformations based on rigidity”, in Proc. 41st IEEE ConferenceDecision andControl, Las Vegas, NV, 2002, pp. 2959-2964.
[18] J. A. Fax and R. M. Murray, “Information flow and cooperative controlof vehicle formations”, IEEE Trans. Autom. Control, Vol.49, No.9, pp.1465-1476, 2004.
[19] S. Friedland, “On inverse multiplicative eigenvalue problems for matrices”, Linear Alg. and Its Applic., Vol.12, No.2, pp.127-137, 1975.
[20] J. Guo, Z. Lin, M. Cao, G. Yan, “Adaptive control schemes for mobilerobot formations with triangularized structures”, IET Control Theory & Applic, Vol.4, No.9, pp.1817-1827, 2010.
[21] J. Guo, G. Yan, Z. Lin, “Balanced circular formation control basedon gossip communication”, in Proc. 30th Chinese Control Conf., Yantai,China, 2011, pp. 6036-6041.
[22] J.M. Hendrickx, B.D.O. Anderson, J.C. Delvenne, V. D. Blondel, “Directed graphs for the analysis of rigidity and persistence in autonomous agent systems”, Int. J. Robust and Nonlin Control, Vol.17, No.10-11, pp.960-981, 2007.
[23] A. Jadbabaie, J. Lin, A.S. Morse, “Coordination of groups of mobileautonomous agents using nearest neighbor rules”, IEEE Trans. Automatic Control, Vol.48, No.6, pp.988-1001, 2003.
[24] L. Krick, M.E. Broucke, B.A. Francis, “Stabilisation of infinitesimallyrigid formations of multi-robot networks”, International Journal of Control, Vol.82, No.3, pp.423-439, 2009.
[25] G. Lafferriere, A. Williams, J. Caughman, J.J.P. Veerman, “Decentralized control of vehicle formations”, System & Control Letter, Vol.54, No.9, pp. 899-910, 2005.
[26] G. Laman, “On graphs and rigidity of plane skeletal structures”, Journal Engineering Mathematics, Vol.4, No.4, pp. 331-340, 1970.
[27] Z. lin, “Distributed Control and Analysis of Coupled Cell Systems”, VDM Publishing, Germany, pp.1-20, 2008.
[28] Z. Lin, M.E. Broucke, B.A. Francis, “Local control strategies for groups of mobile autonomous agents”, IEEE Trans. Automatic Control, Vol.49, No.4, pp.622-629, 2004.
[29] Z. Lin, B. A. Francis, M. Maggiore, “Necessary and sufficient graphical conditions for formation control of unicycles”, IEEE Trans. Automatic Control, Vol.50, No.1, pp. 121-127, 2005.
[30] N. Moshtagh, N. Michael, A. Jadbabaie, K. Daniilidis, “Visionbased distributed control laws for motion coordination of nonholonomnic robots”, IEEE Transaction Robotics, Vol.25, No.4, pp. 851-860, 2009.
[31] R. M. Murray, “Recent research in cooperative control of multivehicle systems”, Journal of Dynamic Systems, Measurement, and Control, Vol.129, No.5, pp. 571-583, 2007.
[32] R. Olfati-Saber, R.M. Murray, “Distributed cooperative control ofmultiple vehicle formations using structural potential functions”, in Proceeding 15th IFAC World Congress, Spain, pp. 346-352, 2002.