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Abstract-The paper concentrates on the fundamental coordination problem that requires a network of agents to achieve a 

specific but arbitrary formation shape. A new technique based on complex Laplacian is introduced to address the problems 

of which formation shapes specified by inter-agent relative positions can be formed and how they can be achieved with 

distributed control ensuring global stability. Concerning the first question, we show that all similar formations subject to 

only shape constraints are those that lie in the null space of a complex Laplacian satisfying certain rank condition and that 

a formation shape can be realized almost surely if and only if the graph modeling the inter-agent specification of the 

formation shape is 2-rooted. Concerning the second question, a distributed and linear control law is developed based on the 

complex Laplacian specifying the target formation shape, and provable existence conditions of stabilizing gains to assign 

the eigenvalues of the closed-loop system at desired locations are given. Moreover, we show how the formation shape 

control law is extended to achieve a rigid formation if a subset of knowledgable agents knowing the desired formation size 

scales the formation while the rest agents do not need to re-design and change their control laws. 

 

Index Terms—Distributed control, formation, graph Laplacian, multi-agent systems, stability 

 

I. INTRODUCTION 

 

In recent years, there has been a tremendous surge of 

interest among researchers from various disciplines of 

engineering and science in a variety of problems on 

networked multi agent systems. Modelling the interaction 

topology of distributed Agents as a graph, a main stream 

of research ([3], [23], [28], [31], and [35]) concentrates on 

understanding and designing the mechanisms from the 

structure point of view on how collective behaviours 

emerge from local interaction in absence of high level 

centralized supervision and global information exchange. 

An interesting example and area of on-going research is 

the control of teams of autonomous mobile robots, 

unmanned aerial vehicles (UAVs), and autonomous 

underwater vehicles (AUVs), so that they work 

cooperatively to accomplish a common goal without 

centralized control and a global coordinate system. As 

teams of agents working together in formation can be 

found in various applications such as satellite formation 

flying, source seeking and exploration, ocean data 

retrieval, and map construction, much attention has been 

given to the control of formations. Studies concerning this 

subject focus primarily on the formation architecture as 

well as the stability of the formation systems. The former 

mainly concentrates on defining formation using graph-

theoretic rigidity [4], [16], [17], [22],[33], [40], while the 

latter concerns stabilization to a formation[7], [8], [10], 

[24], [32], [38], [39] and control of formation shape in 

moving [3], [5], [12]-[14], [20].With regard to rigid 

formations, there have been several types of control 

strategies, e.g., affine feedback control laws[1], [2], [10], 

[18], [25], [29], [34], nonlinear gradient control laws [8], 

[13], [20], [24], [38], and very recently, angle-based 

control algorithms [6], [21], [30]. The goal is to achieve 

affirmation with a determined size, which has only 

freedoms of translations and rotations. On the other hand, 

[9] studies the formation control problem with the 

objective of steering a team of agents into a formation of 

variable size. By allowing the size of the formation to 

change, the group can dynamically adapt to changes in the 

environment such as unforeseen obstacles, adapt to 

changes in group objectives, or respond to threats. In this 

paper, we concentrate on the fundamental coordination 

problem that requires the agents to achieve a specific but 

arbitrary formation shape. By formation shape, we are 

referring to the geometrical information that remains when 

location, scale, and rotational effects are removed. Thus, 

formation shapes invariant under the Euclidean similarity 

transformations of translation, rotation and scaling. The 

formation shape control problem is of its own interest if 

the agents do not have notion of the world coordinate 

system’s origin as well as unit of length or if the goal is to 

just form a pattern such that the agents can then agree on 

their respective roles in a subsequent, coordinated action. 

Moreover, formation shape control also serves as a basis 

for rigid formation control. As we show in this paper, 

when formation shape control is possible, a task of rigid 

formation control can be accomplished with a subset of 

knowledgeable agents knowing the desired formation size, 

for which the advantage is that the rest agents do not need 

to redesign and change their control laws in order to 

achieve the desired formation scaled by the desired size. In 

this context, the main research questions are which 

formation shape specified by inter-agent relative positions 

can be formed and how they can be achieved with 
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distributed control ensuring global stability. Concerning 

the first question, we introduce the notion of similar 

formation and show that all similar formations subject to 

only shape constraints are those that lie in the null space of 

a complex Laplacian satisfying certain rank  condition. 

Moreover, we prove that an equivalent graphical condition 

such that a formation shape can be realized is that the 

graph modelling the inter-agent specification of the 

formation shape is 2-rooted. This is a kind of new 

connectivity in graph theory, meaning that there exists a 

subset of two nodes from which every other node is 2-

reachable. Concerning the second question, we develop a 

distributed and linear control law that is based on the 

complex Laplacian specifying the target formation shape 

and can be locally implemented byonboard sensing using 

relative position measurements. It is shown that for almost 

all complex Laplacian specifying the target shape, 

stabilizing gains exist to ensure not only globally 

asymptotic stability but also other performance 

specifications such as robustness and fast convergence 

speed by assigning the eigenvalues of the closed-loop 

system at desired locations. A procedure is also provided 

on how to find stabilizing gains. In addition, we show how 

the formation shape control law is extended to achieve a 

rigid formation with the formation size Controlled by at 

least a pair of agents when they know the desired 

formation size. The contributions of the paper are three-

fold. First, the paper presents a systematic approach based 

on complex Laplacianfor the formation shape control 

problem that is significant in the field. The work is an 

extension of our conference paper [37], including new 

developments on systematic construction of complex 

Laplacian for a given target formation shape, on finding 

stabilizing gains arbitrarily assigning the eigenvalues of 

the closed-loop system, and on how a rigid formation can 

be accomplished by controlling a subset of agents while 

the remaining agents still implement the same formation 

shape control law. Second, it provides a new way for rigid 

formation control by imposing one edge length constraints. 

Compared with globally rigid formation specified by 

integrant distances and nonlinear gradient control laws, the 

approach requires much less relative position 

measurements. Also, the approach makes possible that a 

large number of agents achieve a rigid formation almost 

globally by combining the nonlinear gradient control laws 

for a small number of agents to attain the edge length 

constraints, which are well studied with ensured almost 

global stability properties ([7], [8], [15], [20], [38]), and 

the simple linear formation shape control laws for the 

remaining agents. The approach has an advantage that a 

group of agents can easily change their formation size 

without a re-design of the control laws for all the agents. 

This property is more desirable in situations where the 

environment change is only observed by a minority of 

agents in the group. Most importantly, duet the use of 

linear control laws by most agents, it brings the hope by 

extending the approach to solve those challenging 

formation control problems in the setup of directed (time 

varying) topology and in higher dimensional spaces. Third, 

the work provides an original analysis for understanding 

the relationship between complex graph Laplacian and 

graphical connectivity, which researchers from other 

disciplines may be interested in. Though the paper mainly 

focuses on the formation control problem of networked 

agents in the plane. The methods however, are general, 

and they have applicability beyond multi robot formations, 

e.g., distributed beam forming of communication systems 

and power networks where a pattern in the state is an 

objective. The organization of the paper is as followers. 

We review the notations and some knowledge of graph 

theory in Section Iain Section III necessary and sufficient 

(algebraic and graphical) conditions are analysed for 

similar formations. Global stabilization and stability 

analysis of multi-agent formations are presented in Section 

IV. Simulation and experiment results are given in Section 

V. Section VI concludes our work and points out several 

open problems along the path introduced in the paper.  

 

II. NOTATION AND GRAPH THEORY 

 

A. Notation 

We denote by C and R the set of complex and real 

numbers, respectively. ι= √−1denotes the imaginary unit. 

For acomplex number 𝑝 ∈ 𝐶, |𝑝|represents its modulus. 

For a set𝜀, |𝜀|, represents the cardinality. 1n represents the 

n-dimensional 

vector of ones and In  denotes the identity matrix of order 

n. A block diagonal matrix, which has main diagonal 

block matricesA1, . . ., Anand off- diagonal blocks zero 

matrices, is denoted 

asbd [A1, . . ., An]. 

 

B. Graph Theory 

An undirected graph 𝐺 = (𝑉, 𝜀)consists of a non-empty 

node set V={1,2,..,n}and an edge set 𝜀 ⊆ 𝑉 × 𝑉where an 

edge of G   is a pair of un-ordered nodes. Undirected 

graphs can beconsidered as a special class of directed 

graphs with theedges consisting of pairs of ordered nodes, 

called bidirectional graph, for which each edge is 

converted into two directed edges, (i,j) and (j,i) In what 

follows we use the notion of bidirectional graph (or simply 

a graph for short) because the graph model we study is 

topologically equivalent to an undirected graph but 

different weights are considered on the edges of different 

order for the same pair of nodes. However, the graphical 

representation of undirected graphs is still used throughout 

the paper (i.e., we draw a line rather than two lines with 

arrows in the graph as the edges). A walk in a graph G is 

an alternating sequence 𝑝: 𝑣1𝑒1𝑣2𝑒2…𝑒𝑘−1𝑣𝑘of nodes 𝑣𝑖 
and edges 𝑒𝑖 such that 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1)for every 𝑖 =
 1, 2, . . . , 𝑘 − 1.We say that 𝑝is a walk from 𝑣1to 𝑣𝑘.If the 

nodes of a walk 𝑝are distinct, 𝑝ia a path. 𝑣1 And𝑣𝑘 are 

called terminal nodes and other nodes are called internal 

nodes. A path is called Hamiltonian path if it visits every 

node in the graph exactly once. Throughout the paper, we 

let 𝑁𝑖 = {𝑗: (𝑗, 𝑖) ∈ 𝜀}. In the paper, we assume that a 

bidirectional graph does not have self-loops, which means 

𝑖 ∉ 𝑁𝑖 for any node i.Next, we introduce two concepts. 
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Definition 2.1: For a bidirectional graph𝐺 .a node 𝑣is said 

to be 2-reachable from a non-singleton set U of nodes if 

there exists a path from a node in U to v after removing 

any one node except node v 

Definition 2.2: A bidirectional graph 𝐺is said to be 2-

rooted if there exists a subset of two nodes, from which 

every other node is 2-reachable. These two  

 

 
Fig. 1. Graphs that is 2-rooted and not 2-rooted 

 

Nodes are called roots in the graph. Consider for example 

the graphs in Fig. 1. In Fig. 1(a), let U={1,2} and it can be 

checked that node 3 is 2-reachable from  U as after 

removing any one other node we are still able to find a 

path from a node in U to node 3. Similarly, it is known that 

node 4 and 5 are also 2-reachable from U in Fig. 1(a). 

Thus the graph in Fig. 1(a) is 2-rooted with the two roots 

being nodes1 and 2. In Fig. 1(b), the graph is 2-rooted as 

well and any two nodes can be considered as roots in the 

graph. In Fig. 1(c), again let U={1,2 } and it is known that 

node 3 is not 2-reachable from the set U as if we remove 

node 4, there is no path anymore from any node in U to 

node 3. Furthermore, it can be verified that no matter how 

we select a subset of two nodes, there always exists 

another node that is not 2-reachable from the selected 

subset of nodes. Therefore, the graph in Fig. 1(c) is not 2-

rooted. 

 

Finally, we introduce a complex Laplacian for a 

bidirectional graph. The complex-valued Laplacian L of a 

bidirectional graph G is defined as follows: The ij
th

entry 

𝐿(𝑖, 𝑗) =

{
 
 

 
 −𝑤𝑖           𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑗 ∈ 𝑁𝑖
  0              𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑗 ∉ 𝑁𝑖

∑𝑤𝑖,𝑗
𝑗∈𝑁𝑖

                       𝑖𝑓 𝑖 = 𝑗
 

 

Where𝑤𝑖𝑗 ∈ ℂ Note that the graph is a bidirectional graph, 

so the pattern of zero and nonzero entries of L is 

symmetric, but L may not be symmetric due to possibly 

different weights on the edges of the same pair of nodes 

but with different order.  

 

The definition of complex Laplacian is nothing new from 

real Laplacian except that the nonzero entries can be 

complex numbers. Consequently, it is also true that a 

complex Laplacian has at least one eigenvalue at the origin 

that’s associated 

Eigen vector is 1n (namely, L1n=0).  

 

A permutation matrix is a square binary matrix that has 

exactly one entry 1 in each row and each column and 

0’selsewhere. Renumbering the nodes of a graph is 

equivalent to apply a permutation transformation to the 

Laplacian. That is, 𝐿′ = 𝑃𝐿𝑃𝑇where Land L’are the 

Laplacian before and after renumbering the nodes, and P is 

the corresponding permutation matrix.   

 

III. NECESSARY AND SUFFICIENT CONDITIONS 

FOR SIMILAR FORMATIONS 

 

A. Overview of Rigid Frameworks With Distance 

Specifications 

To introduce the notion of similar formation we will 

embed a graph in the complex planeℂ as as a framework. 

Let 𝐺 = (𝜈, 𝜀)be a bidirectional graph with n nodes. We 

embed G into ℂassigning to each node i a location 

(complex number) 𝜉𝑖 ∈ ℂ 

In a reference frameΣ. Define the n-dimensional composite 

complex vector 𝜉 =  [𝜉1, 𝜉2, . . . , 𝜉𝑛]𝑇 ∈ C𝑛 

 
Fig. 2   (a) Not rigid. (b) Rigid but not globally rigid. (c) Globally rigid. 

 

Formation configuration 

in the reference frame Σ. A framework is a pair (G, 𝜉) 

Throughout the paper, we assume that 𝜉𝑖 ≠ 𝜉𝑗 and 𝑖 ≠

𝑗meaningthat no two nodes are  overlapping each other. In 

the following, we review a little bit about rigidity of 

graphs using the distance specifications. The materials 

below are taken from [24]. Associated with the framework 

(G, 𝜉),  define a function  𝑔: ℂ𝑛 → ℝ|ℰ|by 

 

𝑔(𝜉) ≔ [… |𝜉𝑖 − 𝜉𝑗|
2
… . ]𝑇  

Called a rigid function. The kth component of (𝜉), |𝜉𝑖 −

𝜉𝑗|
2
 , corresponds to the edge 𝑒𝑘𝜖 𝜀where nodes i and j are 

connected by 𝑒𝑘and specifies a desired edge length 𝑑𝑘. Let 

𝑑 = [… . 𝑑_𝑘 … . ]𝑇be the composite vector describing 

thedistance specifications on the edges in G. Then the 

notions of rigidity and global rigidity can be stated as 

follows. 

Definition 3.1: A framework (𝐺, 𝜉)specified by 𝑔(𝜉) =
𝑑is rigid if there exists a neighbourhood ℬ ⊂ ℂ𝑛 of 𝜉such 

that 

𝑔−1(𝑑) ∩  ℬ = {𝑐11𝑛 + 𝑒
𝑖𝜃𝜉:  𝑐1 ∈  ℂ 𝑎𝑛𝑑 𝜃 ∈ [0,2𝜋)} 

Definition 3.2: A framework (𝐺, 𝜉)specified by 𝑔(𝜉) =
𝑑is globally rigid if 

𝑔−1(𝑑) = {𝑐11𝑛 + 𝑒
𝑖𝜃𝜉:  𝑐1 ∈  ℂ 𝑎𝑛𝑑 𝜃 ∈ [0,2𝜋)} 

 

The level set 𝑔−1(𝑑)consists of all possible points that 

have the same edge lengths as the framework (𝐺, 𝜉)The set 

𝑐11𝑛 + 𝑒
𝑖𝜃𝜉:  𝑐1 ∈  ℂ and  𝜃 ∈ [0,2𝜋)}consists of points 

related byRotations 𝜃and translations 𝑐1i.e., rigid body 

motions, of the framework  (𝐺, 𝜉)Therefore, a framework 

is rigid if thelevel set 𝑔−1(𝑑)in a neighbourhood of 

𝜉contains only pointscorresponding to rotations and 

translations of the formationconfiguration 𝜉.A framework 

is globally rigid if the level set 𝑔−1(𝑑) in  ℂ𝑛contains only 
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points corresponding torotationsand translations of the 

formation configuration 𝜉For example, consider the 

framework in Fig. 2(a). It is possible to translate only 

nodes 1 and 2, while maintaining the four edge lengths, to 

a formation that is not attained by rigid body motions, so 

the framework specified by 𝑔(𝜉) = 𝑑is not rigid. If we 

add one more edge to obtain a framework as in Fig. 2(b), 

the only motion to maintain the five edge lengths in the 

neighbourhood is a rigid body motion (rotations and 

translations). As a result, the framework is rigid. But node 

1can has a flip along the edge connecting 2 and 4, while 

the edge lengths are preserved, so it is not globally rigid. 

Fig. 2(c) shows a globally rigid framework. 

 

B. Linear Constraints and Similar Formations 

From the preceding subsection, it is clear that in order to 

make a framework rigid (or globally rigid), each node in 

the graph has to have at least two neighbours as otherwise 

if a node has only one neighbour, this node can swing 

around its neighbour. 

 

By observing this fact, we will then introduce a new linear 

constraint for a framework rather than the distance 

constraints on the edges of the graph. For each node i in 

the graph, since it has at least two neighbours, we can 

define a linear constraint for the framework as follows: 

∑𝑤𝑖𝑗
𝑗∈𝑁𝑖

(𝜉𝑖 − 𝜉𝑗) = 0 

For appropriate complex weights 𝑤𝑖𝑗defined on the edges 

linking to node i. The complex weights ake the relative 

state vectors rotated and scaled so that the summation 

becomes 0 for a given framework, and thus provide a 

linear constraint. Take Fig. 3 as an example. Node 3 has 

two neighbours (namely, 2 and 4). So the complex weights 

𝑤32 and 𝑤34rotate and scale the relative states 𝜉2 − 𝜉3 and 

𝜉4 − 𝜉3respectively so that the summation is zero as shown 

in Fig. 3. We should point out that the choice of such 

complex weights is not unique. 

 

Taking the linear constraint on every node, we derive a 

composite constraint for the framework as follows:𝐿𝜉 = 0 

Where is the complex Laplacian corresponding to the 

bidirectional graph G whose nonzero off-diagonal entry is 

−𝑤𝑖𝑗thenegative weight on edge (j, i). Now we are ready 

to introduce the notion of similar formation. 

 

Definition 3.3: A framework (𝐺, 𝜉)specified by 𝐿𝜉 = 0is 

similar if ker(𝐿) = {𝑐11𝑛 + 𝑐2𝜉:  𝑐1 𝑐2 ∈  ℂ} 

 

 
Fig. 3.Illustration of a linear constraint for a framework. 

 

Remark 3.1: Note that a complex number 𝑐2can be 

writtenin the polar coordinate form (namely 𝑐2 = 𝜌𝑒𝑖𝜃).So 

the solutions to the linear constraint 𝐿𝜉 = 0consist of 

points relatedby translations 𝑐1 rotations 𝜃, and scaling 

𝜌(four degrees offreedom). That is, the formations subject 

to the linear constraint  𝐿𝜉 = 0are scalable from the 

formation configuration 𝜉inaddition to rigid body motions 

(translations and rotations). Therefore, one additional 

distance constraint on an edge will make the framework 

become globally rigid. 

 

 
Fig. 4. A path graph of n nodes with its terminal nodes labelled 

as 1 and 2. 

 

C. Necessary and Sufficient Conditions 

In this subsection we are going to explore the necessary 

and sufficient algebraic and graphical conditions for 

similar frameworks. 

 

Theorem 3.1: A framework (𝐺, 𝜉)specified by  𝐿𝜉 = 0 is 

similar if and only if 𝑟𝑎𝑛𝑘(𝐿)  =  𝑛 − 2. 
Proof: (Sufficiency) L has a zero eigenvalue with an 

associated eigenvector 𝜉  because 𝐿𝜉 = 0Furthermore, 

since L is a Laplacian matrix, so 1𝑛 = 0, meaning that 

1𝑛isanother eigenvector associated with the zero 

eigenvalue. Thetwo eigenvectors 𝜉 𝑎𝑛𝑑1𝑛are linearly 

independent because 𝜉𝑖 ≠ 𝜉𝑗moreover, by the assumption 

rank(𝐿)  =  𝑛 − 2.we know that L has only two zero 

eigenvalues. Thus the null space of L is 𝑐11𝑛 +
𝑐2𝜉:  𝑐1 𝑐2 ∈  ℂand so the framework (𝐺, 𝜉)specified by 

𝐿𝜉 = 0is similar (Necessity) suppose on the contrary that  

𝑟𝑎𝑛𝑘(𝐿)  ≠ 𝑛 − 2. 
Then 𝑟𝑎𝑛𝑘(𝐿)must be less than 𝑛 − 2since we already 

have 𝐿𝜉 = 0and𝐿1𝑛 = 0. Thus, it follows that the null 

space of  L is of 3-dimension at least and ker(𝐿) ≠
{𝑐11𝑛 + 𝑐2𝜉:  𝑐1 𝑐2 ∈  ℂ}, which contradicts to the 

condition that the framework specified by 𝐿𝜉 = 0is 

similar.  

 

Theorem 3.1 presents an algebraic condition requiring 

to check whether 𝑟𝑎𝑛𝑘(𝐿)  ≠ 𝑛 − 2. 
We give a graphical condition. 

 

Theorem 3.2: A framework (𝐺, 𝜉)specified by  𝐿𝜉 =
0(foralmost all L satisfying 𝐿𝜉 = 0is similar if and only if 

G is 2-rooted. The proof requires a lemma. 

 

Lemma 3.1: Consider a framework (𝐺, 𝜉)where G 

is a path graph of 𝑛nodes with its terminal nodes labeled 

as 1 and 2 (Fig. 4). If 𝜉𝑖 ≠ 𝜉𝑗for𝑖 ≠ 𝑗,then there exists a 

complex Laplacian 

𝐿 = [
𝐴2×2 𝐵2×(𝑛−2)

𝐶(𝑛−2)×2 𝐷(𝑛−2)×(𝑛−2)
] 

such that 𝐿𝜉 = 0and 𝐷is of rank𝑛 −  2. 
Proof: If necessary, relabel the internal nodes of the path 

graph G in an order from 3 to 𝑛as shown in Fig. 4. 

Underthis labelling scheme, it is then clear that 𝐷is tri-
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diagonal.Denote the first row of 𝐷by 𝑑1
𝑇and the remaining 

rows of 𝐷 by 𝐷̅Moreover, note that node 1 has only one 

neighbor (namely, node 3), so in the first column of 𝐶only 

the (1,1)- entry is nonzero by the definition of 𝐿Denote the 

(1,1)-entry of 𝐶by  𝑐1Then we can write 𝐶 as  

C= [
𝑐1 0
0 𝑐2̅

] 

 

Where 𝑐2̅  ∈ ℂ
(𝑛−3)From the definition of Laplacian, it 

followsthat𝑐1 = −𝑑1
𝑇 1, 𝑐2̅ = −𝐷̅1 

 

Suppose for an𝐿satisfying 𝐿𝜉 = 0 that 𝐷is not of rank 

𝑛 − 2.Moreover, notice that the rows of   𝐷̅ are linearly 

independent.So there must exist an(n −3)dimensional 

vector 𝜆such that𝑑1
𝑇 = 𝜆𝑇𝐷̅Moreover, using (1), we obtain 

that𝑐1 = 𝜆
𝑇𝑐2̅ ≠ 0From𝐿𝜉 = 0, thus we have 

 

𝑐1𝜉1 + 𝑑1
𝑇𝜉′ = 0             (2) 

 

and 

𝑐2̅𝜉2 + 𝐷̅𝜉
′ = 0    (3) 

Where 𝜉′is the sub-vector formed by the last n −2 entries 

of 𝜉.Pre-multiplying 𝜆𝑇to (3) and using𝑐1 =  𝜆𝑇𝑐2̅ and  

𝑑1
𝑇 = 𝜆𝑇𝐷̅ results in 

𝑐1𝜉2 + 𝑑1
𝑇𝜉′ = 0            (4) 

Comparing (4) and (2) we obtain that𝜉1 = 𝜉2a 

contradiction. 

Therefore, D is of rank 𝑛 −  2. 

 

 
Fig. 5. Example of the relabeling procedure, where U0 = {1, 2}, 

U1 = 

{3, 4, 5}, and so on. 

 

Proof of Theorem 3.2: (Sufficiency) If G is 2-rooted, then 

from Definition 2.2, there is a subset of two nodes, from 

which every other node is 2-reachable. Without loss of 

generality, denote the subset by 𝑈0and label the two nodes 

in 𝑈0 by 1and 2. Select any node i not in 𝑈0 and then we 

can find twodisjoint paths (no common nodes in these two 

paths except i)from 1 to i and from 2 to i since node i is 2-

reachable from𝑈0. Denote the set of nodes in these two 

paths excluding thenodes in 𝑈0 by 𝑈1 and denote 𝑛1 the 

total number of nodes in 𝑈1. Relabel the nodes in 𝑈1 from 

3 to 𝑛1 + 2. The next stepis then to select another node, say 

j, not in 𝑈0 ∪ 𝑈1 . Also, because node is 2-reachable 

from𝑈0, there must be twodisjoint paths from two different 

nodes in 𝑈0 ∪ 𝑈1to node j, for which only the two 

terminal nodes are in 𝑈0 ∪ 𝑈1. Denote𝑛2the total number 

of nodes in these two paths excluding the two terminal 

nodes in 𝑈0 ∪ 𝑈1and relabel these nodes from 

𝑛1 + 3 to𝑛1 + 𝑛2 + 2. Repeat the procedure until all the 

nodes are included. An illustration is presented in Fig. 5. 

According to the procedure, it is clear that∑ 𝑛𝑖  +  2 𝒊 =  𝑛 

Take the graph G’with only edges included in the paths in 

the procedure. It is a subgraph of G with the same node 

set. 

Notice that if a node i in 𝑈𝑚1 is also a terminal node of 

some paths composed of nodes in 𝑈𝑚2 for some 𝑚2 > 𝑚1  

, this node has more than two neighbours as it already has 

two neighbours in𝑈𝑘=0,….,𝑚1  𝑈𝑚1𝑈𝑘 

So we can select 0 for the complex weight 𝑤𝒊,𝑗where𝑖 ∈

𝑈𝑚1 and  𝑗 ∈ 𝑈𝑚2 with 𝑚2 > 𝑚1  

Thus, the Laplacian L’ is of the following form: 

𝐿′ = [

𝐿0 ∗ ∗ ∗
∗ 𝐿0 0 0
∗ ∗ 𝐿0 0
… … … …

] 

where𝐿𝑖is the corresponding block to the the subgraph 

induced by𝑈𝑖in G’ By our construction, we know that the 

subset 𝑈𝑖of nodes together with its two terminal nodes 

forma path graph. Thus, by applying Lemma 3.1 it follows 

thatrank(𝐿𝑖) = 𝑛𝑖. Considering the particular structure of L’ 

we know that 

𝑟𝑎𝑛𝑘(𝐿′) ≥ ∑ 𝑟𝑎𝑛𝑘(𝐿𝑖)

𝑖=1,…

=  ∑ 𝑛𝑖
𝑖=1,…

= 𝑛 − 2 

 

Notice that L’can be considered as a Laplacian of the 

graph G for a special choice of weights with some being 0. 

Thus, by using the fact that either a polynomial is zero or it 

is not zero almost everywhere, it follows that for almost all 

complex weights satisfying𝐿𝜉 = 0, there exists a non-zero 

principalminor of (n −2)th order. Therefore, 𝑟𝑎𝑛𝑘(𝐿) ≥ n 

−2. On the other hand, since 𝜉and 1𝑛are two independent 

eigenvectorsof L corresponding to the zero eigenvalue, we 

have rank(L) =n −2. As a result of Theorem 3.1, the 

framework (G, 𝜉) specifiedby 𝐿𝜉 = 0(for almost all L 

satisfying 𝐿𝜉 = 0) is similar.(Necessity) We prove it in a 

contrapositive form. Supposethat the graph G is not 2-

rooted. As a result, we cannot find two nodes to be roots 

from which all the nodes are 2-reachable.Since 𝐿𝜉 = 0 and 

L1 = 0, there must be two rows of L, say 𝑙𝑞and 𝑙𝑝, which 

can be transformed to zero vectors by elementaryrow 

operations. Choose the two nodes p and q corresponding to 

the two rows as roots and after removing a node, some 

node sare not reachable from the subset of roots. Without 

loss of generality, suppose after removing a node k there 

exist a subset W consisting of k −1 nodes which are not 

reachable from any root and a set𝑊̅consisting of n − k 

nodes which are reachable from one of the roots. Relabel 

the nodes in W as 1, . . . , k -1and relabel the nodes in 𝑊̅as 

k + 1, . . . , n. Then it is certain that the nodes in W are not 

reachable from any node in 𝑊̅.Equivalently, L(i, j) = 0 for 

𝑖 ∈  𝑊 and 𝑗 ∈ 𝑊̅. Thus L is of the following form: 

[
𝐿𝑤 𝑐𝑤 0
∗ ∗ ∗

] 

 

Where  𝐿𝑤 ∈  ℂ
(𝑘−1)×(𝑘−1) and 𝐶𝑤 ∈  ℂ

(𝑘−1))Denote the 

formationconfiguration 𝜉after relabelingby[𝜉𝑎
𝑇 , 𝜉𝑏

𝑇]𝑇 where 



   Int. J. Sci. Res. in Network Security and Communication                                  Vol.5(2) May 2017, E-ISSN: 2321-3256 

  © 2017, IJSRNSC All Rights Reserved                                                                                                                             35 

𝜉𝑎 ∈ ℂ
𝑘 and 𝜉𝑏 ∈   ℂ

𝑘−2According to the definition of L, 

then we have [𝐿𝑤𝑐𝑤]1𝑘 = 0  and [𝐿𝑤𝑐𝑤]𝜉𝑎= 0 As 𝟏𝒌and 

𝜉𝑎are linearly independent by assumption, thenRank 

([𝐿𝑤𝑐𝑤]) ≤ 𝑘 − 2. That is, there exists a row which canbe 

turned into the zero vector under elementary row 

operations.Therefore, rank(L) ≤ 𝑛 − 3, or equivalently by 

Theorem 3.1, it is not true that the framework (G, ξ) 

specified by Lξ= 0 is similar.  

 

 
Fig. 6. If a graph G is not 2-rooted then the framework (G, ξ) 

specified by the distance constraint g(ξ) = d is not rigid. 

 

 
 

 
Fig. 7. Frameworks (G, ξ) specified by the distance constraint 

g(ξ) = d are not rigid, but they are similar when specified by the 

linear constraint Lξ= 0. 

 

Theorem 3.2 shows that 2-rooted connectivity is a 

necessary and sufficient condition for a framework (G, ξ) 

specified by the linear constraint 𝐿𝜉 = 0  to be similar for 

almost all complexLaplacian L(G). 

 

Remark 3.2: It is worth to point out that a graph G (ofn ≥3 

nodes) for a rigid framework (G, 𝜉) using the 

distanceconstraint g(𝜉) = d must also be 2-rooted. This can 

be seen by the following fact. If G is not 2-rooted, then for 

any sub set of two nodes, there always exists another node 

that is not 2- reachable from the subset. That is, after 

removing a node, the graph can be divided into at least two 

sub graphs that are not connected to each other. An 

example is given in Fig. 6, for which after removing node 

3, it results in three sub graphs that are not connected. This 

means, in addition to rigid body motions, another motion 

exists while preserving the distance constraint g(𝜉) = d 

[see for example Fig. 6(a) and 6(b)].However, the reverse 

is not true. In other words, to make a framework (G, 𝜉) 

specified by the distance constraint g(𝜉) =d rigid, the graph 

G requires more links than just 2-rootedconnectivity. From 

the well-known result by Lama in 1970[26], the minimal 

requirement for a framework specified by g(𝜉) = d to be 

rigid is that the graph should have at least 2n -3edges 

where n is the number of nodes. From our analysis we can 

know that the minimally 2-rooted graph requires only n -

1edges, which corresponds to the path graph. So it requires 

much less links when specifying a similar framework in 

terms of the linear constraint 𝐿𝜉 = 0.In Fig. 7, both (a) and 

(b) are not rigid if the framework isspecified by the 

distance constraint g(𝜉) = d, while they are similar if the 

framework is specified by the linear constraint𝐿𝜉 = 0. Fig. 

7(b) is a minimally 2-rooted graph that has onlyn −1 

edges. 

 
Fig. 8. Example of weight selection for a node having two 

neighbors 

 

 
Fig. 9. Example of weight selection for a node having more than 

two neighbors 

 

D. A Systematic Approach for the Construction of L 

In the following, we present a systematic approach for the 

construction of L from the individual viewpoint. That is, 

for a given 2-rooted graph G and a formation configuration 

ξ, each agent i finds the weights wij’s for j ∈ Ni such that 

Lξ= 0. 

As we discussed above, every node of a 2-rooted graph has 

at least two neighbors. In the following, we consider two 

cases. First, consider the case that node i has exactly two 

neighbors. Suppose without loss of generality, its two 

neighbors are j and k. Then the weights wij and wik can be 

parameterized as follows: 

 

[wijwik] = p1i[ ξk−ξiξi−ξj ] 

 

Where p1iis a nonzero complex number and can be chosen 

randomly. That is, [wijwik] is in the linear span of [ξk 

−ξiξi−ξj ]that solely depends on the formation 

configuration ξ. An example is given in Fig. 8.Second, 

consider the case that node ihas more than two neighbors. 

Say without loss of generality that it has totallym (m >2) 

neighbors, labelled by i1, . . . ,im. Select any two 
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neighbors, denoted by ij and ik, from the m neighbors, and 

define an m-dimensional vector ζh with the ijth entry 

beingξik−ξi, the ikth entry being ξi−ξij, and the others 

being zero. Note that there are totally C2m(the binomial 

coefficient) selections of two neighbors out of mneighbors. 

Thus, theweights wii1, . . . ,wiimcan be parameterized as 

follows: 

 

[wii1···wiim] =C2m_h=1phiζh (5)wherephi , h = 1, . . . ,  

 

C2m, is a nonzero complex number and can be chosen 

randomly. An illustrative example is given Fig. 9(a) for 

which node 1 has three neighbors. So it has three choices 

of selecting any two neighbors as shown in Fig.9(b)-(d). 

Then the weight vector is a linear combination according 

to (5). 
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