

www.ijsrnsc.org

Available online at www.ijsrnsc.org

IJSRNSC

Volume-5, Issue-3, June 2017

Research Paper

Int. J. Sc. Res. in

Network Security

and Communication

ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 61

Optimizes NP Problem with Integration of GPU Based Parallel Computing

Santosh Kumar

1*
, S.S. Dhable

2
, Amol D. Potgantwar

3

1*

Dept. Computer Engineering, Sandip Institute of Technology and Research Centre, SPPU, Nashik, India
2
 Dept. Computer Engineering, Sandip Institute of Technology and Research Centre, SPPU, Nashik, India

3
 Dept. Computer Engineering, Sandip Institute of Technology and Research Centre, SPPU, Nashik, India

*Corresponding Author: santosh.kumar@sitrc.org, Tel.: 8554016999

Received 12th May 2017, Revised 28th May 2017, Accepted 14th Jun 2017, Online 30th Jun 2017

Abstract— There are different number of optimization problems are present those are NP problems. Graph theories are

most commonly studied combinational problems. An NP-hard problem takes exponential time for computation to get best

solution. Heuristics algorithms provides great alternative to tackle NP hard problems with optimized solution in a limited

time. GPU architecture boosts computation of heuristics algorithms with single program multiple data approach. By

applying solution level parallelism to traveling salesman problem with global and shared memory level optimizations.

Inside this paper given that the innovative move towards to resolve these combinational troubles through GPU based

parallel computing via CUDA architecture. Evaluating those problem with significant to the transfer rate, effectual memory

utilization and speedup etc. to attain the supreme achievable solution. The algorithm for the optimization problem is in

consideration is 2-opt algorithm which is used to grasp the capable memory management, coordinated completing, saving

time and growing speedup of execution. The experimental results are compared with the performance of different number

of datasets with the execution time as well as the parameter values such as size of blocks. So that the speedup factor is

develop in addition to search out the paramount most favorable solution.

Keywords— Graph Theory, CUDA, GPU, Parallel metaheuristic.

I. INTRODUCTION

In the optimization field, both intellectual and

industrialized problems are frequently composite and NP-

hard. In practice, their modeling is continuously evolving

in terms of constraints and objectives. Thereby, a huge

quantity of real-life optimization harms in knowledge,

business, finances and industries are multifarious and tricky

to solve. Their resolution cannot be approved during a

precise behavior within a levelheaded amount of time and

their resource requirements are ever increasing. To

compact with such a matter, the intend of resolution

process must be support on the cooperative exploit of

sophisticated approaches from combinatorial optimization,

comprehensive parallelism and manufacturing methods.

During the most recent decades, metaheuristics which are

estimated algorithms have been successfully applied to

solve optimization problems. [1, 2, 3]

Indeed, this class of methods allows to producing near-

optimal solutions in a realistic time. Metaheuristics may

unravel occurrences of tribulations that are alleged to

subsist rigid in general, by discovering the typically great

key search gap of these instances. These algorithms attain

this by reducing the valuable range of the search space and

by exploring that space efficiently. Yet, even though

metaheuristics tolerate to shrink the earthly complication of

troubles decision, they remain unsatisfactory to tackle large

problems. Experiments using large problems are often

stopped without any convergence being reached. Thereby,

in designing metaheuristics, there is habitually a trade-off

to be found among the dimension of the problem instance

and the computational involvedness to investigate it. As a

result, merely the employ of parallelism permits to devise

latest methods to tackle large problems. [5, 6]

Over the earlier decades, parallel computing has been

exposed as an unavoidable way to covenant with large

problem instances of difficult optimization problems. The

planning and realization of parallel metaheuristics are

robustly inclined by the computing platform. Most personal

computers integrated with GPUs are typically distant fewer

influential than their incorporate counterparts. That is the

motive why it would be extremely remarkable to exploit

this enormous capacity of computing to implement parallel

metaheuristics. Certainly, GPU computing has materialized

in the modern living since an important challenge for the

 Int. J. Sci. Res. in Network Security and Communication Vol.5(3), June 2017, E-ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 62

parallel computing research area. This novel rising

technology is supposed to be tremendously useful to

accelerate countless multifaceted algorithms. One of the

foremost issues for metaheuristics is to alter obtainable

analogous models and programming paradigms to allow

their deployment on GPU accelerators.[8, 9]

In further terminology, the challenge is to resume the

parallel models and paradigms to efficiently take into

account the characteristics of GPUs. However, the

mistreatments of equivalent molds are not inconsequential,

and many issues correlated to the GPU memory

hierarchical management of this architecture have to be

measured. Generally in words, the main issues to deal those

are:[1]The distribution of data processing between CPU

and GPU, the thread synchronization, the optimization of

data shift between the dissimilar memories, the memory

capacity constraints etc.

Rest of the paper is ordered as follows. Review of literature

is explained in section II. Section III contains system

overview, section IV contains problem formulation, section

V contains experimental analysis and Conclusion is given

in section VI.

II. REVIEW OF LITERATURE

Rafal Skinderowicz proposed, the GPU-based Parallel Ant

Colony System. Paper provides the three narrative

comparable adaptation of the ACS for the GPUs.

Discovering the shortest lane between nest and food

source. Communication is done by between ants using

pheromone chemical substance. [1]

Laurence Dawson & Iain Stewart proposed, an improving

Ant Colony Optimization performance on the GPU using

CUDA. This implement mutually the tour assembly and

pheromone revise stages of Ant Colony Optimization

resting on the GPU by means of the data corresponding

loom. This drastically reduces the organization instant of

tour construction. [2]

Wojciech Czech & David A. Yuen proposed, Efficient

Graph Comparison and Visualization using GPU. This

introduced the numerous graph algorithms for comparison

and revelation of real world networks. To obtain interactive

and robust framework. [3]

Maida Arnautovic, Maida Curic, Emina Dolamic & Novica

Nosovic proposed, Parallelization of the Ant Colony

Optimization for the Shortest Path Problem using OpenMP

and CUDA. That including to find the preeminent vehicle

route amid the elected points. Also finding the straight

pathway in several oriented graphs. [4]

Tomohiro Okuyama, FumihikoIno, Kenichi Hagihara

proposed, A Task Parallel Algorithm for Computing the

Costs of All-Pairs Shortest Paths on the CUDA compatible

GPU. Involving the speedy routine for adding the outlay of

all pairs direct lane on the GPU. [5]

Kamil Rocki & Reiji Suda proposed, High Performance

GPU Accelerated Local Optimization in TSP. Paper

presents the lofty concert GPU accelerated accomplishment

of confined search heuristic algorithm intended for the

TSP. [6]

Marco Dorigo & Luca Maria Gambardella proposed the,

Ant Colony System : A Cooperative Learning Approach to

the Traveling Salesman Problem. In the ACS, a set of

working mediator called ants help out to ascertain the

superior solutions to TSP’s. Ants help using an indirect

form of communication umpired by a pheromone they

situate on the margins of the TSP grid while building

solutions. [7]

Marco Dorigo, Vittorio Maniezzo, & Alberto Colorni

proposed, Ant System: Optimization by a Colony of

Cooperating Agents. The main distinctiveness of this mold

is sanguine response, widen calculation, and the invent

exercise of a rational envious heuristic. Sanguine feedback

accounts for hurried recognition of high-quality solutions,

enlarge computation evade impulsive convergence, and the

avaricious heuristic facilitate to find adequate resolutions

into the unfortunate period of the search process. [8]

Ugur Cekmez, Mustafa Ozsiginan, & Ozgur Koray

Sahingoz proposed, A Uav Path Planning With Parallel

Aco Algorithm On Cuda Platform. The paper involved

passageway is amassed for transmitted keys and gather data

from a Wireless Sensor Network. Due to its ease and

usefulness. [9]

Ying Tan & Ke Ding proposed the, A Survey on GPU-

Based Implementation of Swarm Intelligence Algorithms.

This follows the widespread appraisal of GPU-based

equivalent SIAs in agreement with a recently proposed

catalog. Serious concerns for the capable parallel

completion of SIAs are also described in detail. [10]

Rafal Skinderowicz proposed, Ant Colony System with

Selective Pheromone Memory for TSP. Presents, every part

of trails are hoard within a pheromone recollection, which

in the casing of the Travelling Salesman Problem wants

O(n
2
) memory storeroom, wherever n is the coverage of the

problem occurrence. [11]

Rafal Skinderowicz proposed, Ant Colony System with

Selective Pheromone Memory for SOP. This paper

lengthen the preceding work lying on a inventive

 Int. J. Sci. Res. in Network Security and Communication Vol.5(3), June 2017, E-ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 63

discerning pheromone recollection imitation for the ACS in

which pheromone principles are lay-up barely for the

preferred detachment of trails.[12]

Pavel Kromer, Jan Platos, Vaclav Snasel & Ajith Abraham

proposed, A Comparison of Many-threaded Differential

Evolution and Genetic Algorithms on CUDA. In this paper,

compare incongruity expansion and intrinsic algorithms

employ on CUDA while work out the self-governing

errands scheduling problems.[13]

Byunghyun Jang, Dana, Perhaad Mistry & David Kaeli

proposed the, Exploiting Memory Access Patterns to

Improve Memory Performance in Data-Parallel

Architectures. Intend to encircle techniques for ornamental

reminiscence proficiency of employment, stand on the

scrutiny and tagging of memory admittance samples in

round bodies, blotch vectorization via records alteration

headed for the benefit of the vector-based structure and

algorithmic memory collection meant for scalar-based

architectures. [14]

Kai-Cheng Wei, Chao-Chin Wu & Chien-Ju Wu., proposed

Using CUDA GPU to Accelerate the Ant Colony

Optimization Algorithm. This paper subsequent a new-

fangled comparable scheme, which is labeled the

Transition Condition Method. The provisional upshot have

confirmed that the authority of solutions does not be

sacrificed in the foundation of speed-up. [15]

III. SYSTEM OVERVIEW

A. Problem Statement

To develop a parallel environment framework which will

be practical intended for resolve the optimization troubles

very easily and effectively. Optimization problems which

are NP tribulations can be cracked by means of the various

heuristic algorithms. Appropriate in the track of this the

solution for a difficulty is gained quickly. At t

he

Use of a mixture of heuristic algorithms that will exist

functional for implementation of system. Getting the

approximate key to the different optimization problem

within little quantity of instance with successful memory

employment furthermore increase the speedup of the

operations. [13]

B. Proposed System Architecture

Proposed system is mainly classified into two segments

such that CPU and GPU. Each segment performs its tasks

independently.

Figure 1. Proposed system Architecture

Figure.1 indicates the flow of proposed system. Initial

solution is chosen to evaluate on CPU. GPU memory is to

be paid for initial solution, problem inputs (for example,

lookup table for TSP problem), and neighborhood. As

results of each neighbor valuation need to be hoard for

judgment, fitness constitution is billed for storing

results on GPU. Initial solution and problem inputs are

copied on GPU memory. To produce neighborhood of

candidate clarification, kernel function is instigated. Every

neighbor is stored in a mapped memory locality. Next

kernel function is initiated to evaluate every neighbor in

parallel by mapping a thread to it. Another kernel is

started to select best solution among all evaluated

neighbors. Reduction techniques can be engaged for

this if minimum fitness needs to be computed. Chosen

solution is configured a next candidate for evaluation. Lead

of this approach in excess of iteration-level is lessening

 Int. J. Sci. Res. in Network Security and Communication Vol.5(3), June 2017, E-ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 64

memory relocate operations and deployment of GPU

calculating influence for helpful work.

C. Memory organization flow for GPU Architecture

Simplified Memory association flow for GPU

configuration plan is illustrated in the Figure 2.

Figure 2. GPU Architecture with Memory Organization flow

Usually the GPU surrounds an infinite quantity of stream

processors, each one belonging to solitary of abundant

streaming multi-processors(SM). [1] Next to some specific

instant a lonely interior realized reckoning for an exacting

thread. Threads are accumulated into the obstructs, among

each hunk given to a individual SM. Cores belongs to the

identical SM share, amid others, the reports , restricted

memory, statistics fetch and interpret, and load or store

units [15]. By allocating an assortment of secondary units,

extra computing cores can be filled into a solo SM at the

outlay of a few rating of elasticity of calculations of unit

cores. This is time-consuming, repeatedly on regulates of

compound series, in accessing on the whole memory is the

foremost obstacles to capable analogous computations on

GPUs. The GPU memory bus is wider than the memory

bus of the CPU and has a relatively huge bandwidth, but it

is often still not adequate to provide data for every of the

crucial element of the GPU. Designed for this explanation,

the GPU programming model assumes that utilized an

unwieldy number of threads.

IV. PROBLEM FORMULATION

The system takes sequence of visits between cities in

provisions of co-ordinates values.

The projected structure S is definite as given:

S={X, F, N, T, K, R, W}

Where, X: Set of candidate solutions.

 F: Fitness of solution.

 N: Neighborhood of candidate solutions.

 T: Set of threads.

 K: Fitness structure.

 R: Reduction function.

 W: Best solution.

 n:Size of solution.

 m: Size of neighborhood.

Let, X: {x1 , x2 ,....,xn },

 N: {N1 , N2 ,..., Nm },

 N1 ={x11 ,x 12 ,....,x1n },

 N2 ={x21 ,x 22 ,....,x2n },

 ...

 Nm= {xm1 ,xm2 ,....,xmn },

 T: {t1 , t2 ,..., tm },

 K: {k1 ,k2 ,...,km },

 W: {w1 , w2 ,..., wn }

Function f1:

It is an evaluation function which calculates fitness of a

solution over an operation 'op'.

f1(X) → f1(x1 op x2 op....op xn) Є F

Function f2:

It takes candidate solution X as an input and generates

neighbors N from the respective encoding.

f2(X) → (N1 , N2 ,..., Nm) Є N

Function f3:

It maps every thread from set of threads T to corresponding

neighbor and executes evaluation function over it to

generate fitness K.

f3(T, N) →{T1 → E(N1), T2 → E(N2) ,..., Tm → E(Nm)}

 → (k1, k2,,km) Є K

Function f4:

It takes fitness structure as an input and returns best

solution.

f4(K) → {w1 , w2 ,..., wn } Є W

Function f5:

It sets best chosen solution W as a candidate solution which

will be further optimized by iterating algorithm.

f5(W) → X

V. EXPERIMENTAL ANALYSIS

The results and their analysis done with the help of

different parameter, such as Dataset is used, number of

cities, amount of blocks and required time for execution.

To catch the efficient memory exploitation, synchronized

execution, saving time and increasing speedup of

execution. So that the speedup factor is enhance and get the

best optimal solution. TSPLIB is a library of sample

instances for the TSP (and related problems) from various

sources and of various types.

 Int. J. Sci. Res. in Network Security and Communication Vol.5(3), June 2017, E-ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 65

 Experimental results were evaluated using the system

requirements as Intel Pentium i3 (Min), NVIDIA graphics

card GT610. The Operating System these experiments are

run is Ubuntu 14.04 and the complier is Gcc/Gtt & Nvcc,

with Nvprof Profiler. Where the programming language is

CUDA 7.0. The factors to be in considerations during the

testing are speed-up, execution time & effective utilization

of the memory.

TABLE I. PARALLEL COMPUTATION SPECIFICATIONS ON GPU

Sr. No. Dataset # cities # Blocks Time(sec)

1. Ch130 130 100 0.0146

 200 0.029

 300 0.0421

 400 0.0421

 500 0.06

2. Bier127 127 100 0.0139

 10k 1.0561

 20k 1.957

3. Pr1002 1002 100 1.5762

 200 3.285

 300 4.8314

 2k 29.1702

 10k 144.644

4. Ch130 130 10k 1.0689

 20k 2.1223

 50k 5.2541

 100k 10.524

 200k 21.0184

The above Table I indicate the different datasets with

number of blocks and time in seconds required for

computations. That can be clarifying in fine points with the

graphs.

A. Performance for Dataset Ch130

Dataset Ch130 defines the cities are 130. That tested with

varying number of blocks. As per the results, if increase in

quantity of blocks then also increases quality of solution

that is minimizes tour length in this case.

Figure 3. Performance for Dataset Ch130

B. Performance for Dataset Bier127

Dataset Bier127 including cities are 127. That tested with

the number of blocks. The block size is initially 100 then

goes on 10k, 20k and so no.

Figure 4. Performance for Dataset Bier127

C. Performance for Dataset Pr1002

Dataset pr1002 contains the 1002 cities with the blocks. It

seems that if increase in no. of blocks then also increase in

the quality of the solution.

Figure 5. Performance for Dataset Pr1002

D. Performance for Dataset Ch130

Dataset Ch130 together with the 130 cities. So as to tested

through the amount of blocks. The block size is primarily

10k after that goes on 20k, 50k and so.

Figure 6. Performance for Ch130

 Int. J. Sci. Res. in Network Security and Communication Vol.5(3), June 2017, E-ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 66

TABLE II. COMPARISON OF OPTIMIZED TOUR LENGTH

Dataset

Cities Optimized

Tour Length

Time

(Sec)

Optimized

Tour Length,

Rocki,
K.„et.al [?]

sw24978 24978 908598 15071.55 949792

usa13509 13509 20984503 2310.117 22090071

Figure 7. Comparison of Optimized Tour Length

Comparison of total execution time against quantity of

blocks and amount of cities. Time required to execute is

proportionally increasing as number of blocks of threads

increases. It is observed that time is also increases as the

no. of cities are increased.

VI. CONCLUSION

The proposed system can provide scalable and capable

memory utilization. It is optimized for data transfer

between CPU and GPU memory. Local search

metaheuristic algorithm is made scalable by assigning an

only clarification for each block of threads. This approach

also reduces global memory access by threads of block. It

is tested by implementation on travelling salesman problem

with standard datasets. To achieve the finest optimal

solution of good quality. Which belongings to the

precision, strength, scalability and so forth. It will be

opportune than habitual scrutiny systems.

REFERENCES

[1] Rafal Skinderowicz, “The GPU-based Parallel Ant Colony

System”, University of Silesia (Institute of computer science),
Poland, pp.41-205, 2016.

[2] Laurence Dawson and Iain A. Stewart., “Improving ant colony
optimization performance on the GPU using CUDA”, In
Proceedings of the IEEE Congress on Evolutionary
Computation, Mexico, pp.1901-1908, 2013.

[3] Wojciech Czech, David A. Yuen, “Efficient Graph Comparison
and Visualization using GPU”, The 14th IEEE International
Conference on Computational Science and Engineering, China,
pp. 561-566, 2011.

[4] Maida Arnautovic, Maida Curic, Emina Dolamic and Novica
Nosovic, “Parallelization of the Ant Colony Optimization for the
Shortest Path Problem using OpenMP and CUDA”, MIPRO,
Croatia, pp.7-12, 2013.

[5] Tomohiro Okuyama, FumihikoIno, Kenichi Hagihara, “A Task
Parallel Algorithm for Computing the Costs of All-Pairs
Shortest Paths on the CUDA compatible GPU”, International
Symposium on Parallel & Distributed Processing with
Applications, Australia, pp.284-291 2008.

[6] Kamil Rocki & Reiji Suda, “High Performance GPU
Accelerated Local Optimization in TSP”, IEEE 27

th

International Symposium on Parallel & Distributed Processing
Workshops, USA, pp. pp.1788-1796, 2013.

[7] M. Dorigo, LM. Gambardella., “Ant colony system: a
cooperative learning approach to the traveling salesman
problem”, IEEE Trans. Evolutionary Computation, Vol.1,
Issue.1, pp.53-66, 1997.

[8] Marco Dorigo, Vittorio Maniezzo, Alberto Colorni., “Ant

system: optimization by a colony of cooperating agents”, IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 26,

Issue.1, pp.29-41, 1996.

[9] U. Cekmez, M. Ozsiginan, O.K. Sahingoz., “A uav path
planning with parallel aco algorithm on cuda platform”,
International Conference on in Unmanned Aircraft Systems
(ICUAS), USA, pp.347-354, 2014.

[10] Y. Tan and K. Ding, “A survey on gpu-based implementation of
swarm intelligence algorithms”, IEEE Transactions on
Cybernetics, Vol.46, Issue.9, pp.1-14, 2015.

[11] Rafal Skinderowicz, “Ant colony system with selective
pheromone memory for TSP”, International Conference ICCCI
2012, Vietnam, pp. 483-492, 2012.

[12] Rafal Skinderowicz. “Ant colony system with selective
pheromone memory for SOP.”, 5th International Conference
ICCCI 2013, Romania, pp. 711-720, 2013.

[13] Pavel Kromer, Jan Platos, Vaclav Snasel, “Nature-inspired
meta-heuristics on modern gpus: State of the art and brief
survey of selected algorithms”, International Journal of Parallel
Programming, Vol.42, Issue.5, pp.681-709, 2014.

[14] Byunghyun Jang, Dana Schaa, Perhaad Mistry, David R. Kaeli.
“Exploiting memory access patterns to improve memory
performance in data-parallel architectures”, IEEE Trans.
Parallel Distrib. Syst., Vol.22, Issue.1, pp.105-118, 2011.

[15] Kai-Cheng Wei, Chao-Chin Wu, Chien-Ju Wu, “Using CUDA
GPU to accelerate the ant colony optimization algorithm” ,
International Conference on Parallel and Distributed Computing
Applications and Technologies, China, pp.90-95, 2013.

Authors Profile

Prof. Santosh Kumar, currently working as
Assistant Professor, in Computer Engineering
Department, SITRC, Nashik affiliated to
Savitribai Phule Pune University. He has
Postgraduate (M.Tech) in Computer science &
Engineering in 2010. His research areas are,
High Performance Computing, Big data &
analytics and GPU. He has published more than
25 papers in international Journal, National Journal and conferences,

 Int. J. Sci. Res. in Network Security and Communication Vol.5(3), June 2017, E-ISSN: 2321-3256

 © 2017, IJSRNSC All Rights Reserved 67

Attended Various Workshop and seminar. He has deliver expert
lecture on system programming and Latex.

Miss. Swati S. Dhable, currently working as a
PG student, in Computer Engineering
Department, SITRC, Nashik affiliated to
Savitribai Phule Pune University. She completed
her B.E (Computer science & Engineering) in
2014 at SIEM, Nashik. Her research interest
includes Parallel Computing, Big data and GPU.

Prof. (Dr) Amol D. Potgantwar, currently
working as a HOD, in Computer Engineering
Department, SITRC, Nashik affiliated to
Savitribai Phule Pune University. He received
Ph.D. degree in Computer science & Engineering.
His research areas are, Mobile computing,
wireless technology, near field communication,
Image Processing and Parallel Computing. He has
registered five (05) patents on Indoor Localization System for Mobile
Device Using RFID & Wireless Technology, RFID Based Vehicle
Identification System and Access Control into Parking. A Standalone
RFID and NFC Based Healthcare System.

